Include the initial implementation of _StringGuts, a 2-word
replacement for _LegacyStringCore. 64-bit Darwin supported, 32-bit and
Linux support in subsequent commits.
* Reduce array abstraction on apple platforms dealing with literals
Part of the ongoing quest to reduce swift array literal abstraction
penalties: make the SIL optimizer able to eliminate bridging overhead
when dealing with array literals.
Introduce a new classify_bridge_object SIL instruction to handle the
logic of extracting platform specific bits from a Builtin.BridgeObject
value that indicate whether it contains a ObjC tagged pointer object,
or a normal ObjC object. This allows the SIL optimizer to eliminate
these, which allows constant folding a ton of code. On the example
added to test/SILOptimizer/static_arrays.swift, this results in 4x
less SIL code, and also leads to a lot more commonality between linux
and apple platform codegen when passing an array literal.
This also introduces a couple of SIL combines for patterns that occur
in the array literal passing case.
Move bits mask from Metadata.h to SwiftShims's HeapObject.h. This
exposes the bit masks to the stdlib, so that the stdlib doesn't have
to have its own magic numbers per-platform. This also enhances
readability for BridgeObject, whose magic numbers are mostly derived
from Swift's ABI.
* Unify the capitalization across all user-visible error messages (fatal errors, assertion failures, precondition failures) produced by the runtime, standard library and the compiler.
* Update some more tests to the new expectations.
- Revisions to unsafeDowncast and withVaList
- Fix the Int64/UInt64 discussion
- Buffer pointer revisions
- Fix Optional example to use new integer methods
- Revise and correct some UnsafeRawBufferPointer docs
- Fix symmetricDifference examples
- Fix wording in FloatingPoint.nextDown
- Update ImplicitlyUnwrappedOptional
- Clarify elementsEqual
- Minor integer doc fixes
- Comment for _AppendKeyPath
- Clarification re collection indices
- Revise RangeExpression.relative(to:)
- Codable revisions
Having such a builtin makes it easier for the optimizer to reason about what is actually happening.
I plan to add later some optimizations which can optimize pieces of code dominated by such a check.
- Most immediately, we now have `withoutActuallyEscaping` as a supported way to temporarily reference a nonescaping closure as if it were escapable, and we plan to break the ABI for escaping and nonescaping closures so that the old `unsafeBitCast` workaround no longer works.
- `unsafeBitCast` is also commonly used to kludge pointers into different types, but we have more semantically meaningful APIs for type punning now. Guide users towards those APIs.
- Suggest more specific and type-safe operations, like `bitPattern:` initializers or `unsafeDowncast`, for the situations where `unsafeBitCast` is being used to avoid dynamic type checks or reinterpret numerical bits.
withoutActuallyEscaping has a signature like `<T..., U, V, W> (@nonescaping (T...) throws<U> -> V, (@escaping (T...) throws<U> -> V) -> W) -> W, but our type system for functions unfortunately isn't quite that expressive yet, so we need to special-case it. Set up the necessary type system when resolving an overload set to reference withoutActuallyEscaping, and if a type check succeeds, build a MakeTemporarilyEscapableExpr to represent it in the type-checked AST.
`type(of:)` has behavior whose type isn't directly representable in Swift's type system, since it produces both concrete and existential metatypes. In Swift 3 we put in a parser hack to turn `type(of: <expr>)` into a DynamicTypeExpr, but this effectively made `type(of:)` a reserved name. It's a bit more principled to put `Swift.type(of:)` on the same level as other declarations, even with its special-case type system behavior, and we can do this by special-casing the type system we produce during overload resolution if `Swift.type(of:)` shows up in an overload set. This also lays groundwork for handling other declarations we want to ostensibly behave like normal declarations but with otherwise inexpressible types, viz. `withoutActuallyEscaping` from SE-0110.
This revises and expands upon documentation for the standard library's
unsafe pointer types. This includes typed and raw pointers and buffers,
the MemoryLayout type, and some other top-level functions.
A recent change made accessibility checking stricter. This had some
fallout on the half-baked @_versioned attribute, where we could no
longer define @_versioned members on a non-@_versioned type.
This was wrong anyway (and will be diagnosed when we add proper
diagnostics for @_versioned), because type metadata for the
internal type did not get the right linkage, but it used to work
as long as you didn't try to get the type metadata at runtime.
This patch adds @_versioned attributes to the right types now that
this broken behavior is gone.
As a result, _Variant{Set,Dictionary}Storage became resilient
(non-@_versioned internal types are not resilient), which broke
too many tests that assumed you can exhaustively switch over all
the cases. Since eager-bridging is going to eliminate this enum
anyway (or so I've heard), make it @_fixed_layout for now.
As of now:
* old APIs are just marked as `deprecated` not `unavaiable`. To make it
easier to co-operate with other toolchain repos.
* Value variant of API is implemented as public @private
`_ofInstance(_:)`.
Update for SE-0107: UnsafeRawPointer
This adds a "mutating" initialize to UnsafePointer to make
Immutable -> Mutable conversions explicit.
These are quick fixes to stdlib, overlays, and test cases that are necessary
in order to remove arbitrary UnsafePointer conversions.
Many cases can be expressed better up by reworking the surrounding
code, but we first need a working starting point.
* Migrate from `UnsafePointer<Void>` to `UnsafeRawPointer`.
As proposed in SE-0107: UnsafeRawPointer.
`void*` imports as `UnsafeMutableRawPointer`.
`const void*` imports as `UnsafeRawPointer`.
Occurrences of `UnsafePointer<Void>` are replaced with UnsafeRawPointer.
* Migrate overlays from UnsafePointer<Void> to UnsafeRawPointer.
This requires explicit memory binding in several places,
particularly in NSData and CoreAudio.
* Fix a bunch of test cases for Void->Raw migration.
* qsort takes IUO values
* Bridge `Unsafe[Mutable]RawPointer as `void [const] *`.
* Parse #dsohandle as UnsafeMutableRawPointer
* Update a bunch of test cases for Void->Raw migration.
* Trivial fix for the SceneKit test case.
* Add an UnsafeRawPointer self initializer.
This is unfortunately necessary for assignment between types imported from C.
* Tiny simplification of the initializer.