and provide a fix-it to move it to the new location as referenced
in SE-0081.
Fix up a few stray places in the standard library that is still using
the old syntax.
Update any ./test files that aren't expecting the new warning/fix-it
in -verify mode.
While investigating what I thought was a new crash due to this new
diagnostic, I discovered two sources of quite a few compiler crashers
related to unterminated generic parameter lists, where the right
angle bracket source location was getting unconditionally set to
the current token, even though it wasn't actually a '>'.
- All parts of the compiler now use ‘P1 & P2’ syntax
- The demangler and AST printer wrap the composition in parens if it is
in a metatype lookup
- IRGen mangles compositions differently
- “protocol<>” is now “swift.Any”
- “protocol<_TP1P,_TP1Q>” is now “_TP1P&_TP1Q”
- Tests cases are updated and added to test the new syntax and mangling
This commit defines the ‘Any’ keyword, implements parsing for composing
types with an infix ‘&’, and provides a fixit to convert ‘protocol<>’
- Updated tests & stdlib for new composition syntax
- Provide errors when compositions used in inheritance.
Any is treated as a contextual keyword. The name ‘Any’
is used emit the empty composition type. We have to
stop user declaring top level types spelled ‘Any’ too.
along with recent policy changes:
- For expression types that are not specifically handled, make sure to
produce a general "unused value" warning, catching a bunch of unused
values in the testsuite.
- For unused operator results, diagnose them as uses of the operator
instead of "calls".
- For calls, mutter the type of the result for greater specificity.
- For initializers, mutter the type of the initialized value.
- Look through OpenExistentialExpr's so we can handle protocol member
references propertly.
- Look through several other expressions so we handle @discardableResult
better.
This is a squash of the following commits:
* [SE-0054] Import function pointer arg, return types, typedefs as optional
IUOs are only allowed on function decl arguments and return types, so
don't import typedefs or function pointer args or return types as IUO.
* [SE-0054] Only allow IUOs in function arg and result type.
When validating a TypeRepr, raise a diagnostic if an IUO is found
anywhere other thn the top level or as a function parameter or return
tpye.
* [SE-0054] Disable inference of IUOs by default
When considering a constraint of the form '$T1 is convertible to T!',
generate potential bindings 'T' and 'T?' for $T1, but not 'T!'. This
prevents variables without explicit type information from ending up with
IUO type. It also prevents implicit instantiation of functions and types
with IUO type arguments.
* [SE-0054] Remove the -disable-infer-iuos flag.
* Add nonnull annotations to ObjectiveCTests.h in benchmark suite.
The issue here is that the constraint solver was deciding on
FixKind::RelabelCallTuple as the fix for the problem and emitting the
diagnostic, even though there were two different fixes possible.
CSDiags has the infrastructure to support doing doing the right thing
here, but is only being used for ApplyExprs, not SubscriptExprs.
The solution is to fix both problems: remove FixKind::RelabelCallTuple,
to let CSDiags handle the problem, and enhance CSDiags to treat
SubscriptExpr more commonly with ApplyExpr. This improves several cases
where the solver was picking one solution randomly and suggesting that
as a fix, instead of listing that there are multiple different solutions.
Basic implementatation of SE-0021, naming functions with argument
labels. Handle parsing of compound function names in various
unqualified-identifier productions, updating the AST representation of
various expressions from Identifiers to DeclNames. The result doesn't
capture all of the source locations we want; more on that later.
As part of this, remove the parsing code for the "selector-style"
method names, since we now have a replacement. The feature was never
publicized and doesn't make sense in Swift, so zap it outright.
overloaded argument list mismatches. We printed them in simple cases
due to "Failure" detecting them in trivial situations. Instead of
doing that, let CSDiags do it, which allows us to pick things out of
overload sets and handle the more complex cases well.
This is a progression across the board except for a couple of cases
where we now produce "cannot convert value of type 'whatever' to
expected argument type '(arglist)'", this is a known issue that I'll
fix in a subsequent commit.
- Enhance the branch new argument label overload diagnostic to just
print the argument labels that are the problem, instead of printing
the types inferred at the argument context. This can lead to confusion
particularly when an argument label is missing. For example before:
error: argument labels '(Int)' do not match any available overloads
note: overloads for 'TestOverloadSets.init' exist with these partially matching parameter lists: (a: Z0), (value: Int), (value: Double)
after:
error: argument labels '(_:)' do not match any available overloads
note: overloads for 'TestOverloadSets.init' exist with these partially matching parameter lists: (a: Z0), (value: Int), (value: Double)
Second, fix <rdar://problem/22451001> QoI: incorrect diagnostic when argument to print has the wrong type
by specifically diagnosing the problem when you pass in an argument to a nullary function. Before:
error: cannot convert value of type 'Int' to expected argument type '()'
after:
error: argument passed to call that takes no arguments
print(r22451001(5))
^
Swift SVN r31795
And give a proper warning when you use 'try?' in a non-failable init.
And do the right thing when trying to SILGen 'try?' delegating to a
failable throwing init.
And make sure DI understands that this is, in fact, an initialization.
More rdar://problem/21692467
Swift SVN r31060
Take expression depth and preorder traversal index into account when
deciding which unresolved overload to complain about, rather than giving
up if there are two exprs with the same number of overloads. Don't
consider solutions with fixes when emitting ambiguous-system
diagnostics.
Swift SVN r30931
other constraints intentionally ripped off, tell the recursive solution that
we can tolerate an ambiguous result. The point of this walk is not to
produce a concrete type for the subexpression, it is to expose any structural
errors within that subsystem that don't depend on the contextual constraints.
Swift SVN r30917