This is simpler, because the native form of that last argument is: a
pointer to a buffer (*) of pointers (*) to witness tables, which is
modelled as a buffer of void *s. Thus, void ***.
The count of the number of witness tables was designed to be an
assertion/check that we've hooked up all the infrastructure
correctly. Everything is now implemented, and the assertion has never
triggered, so it can be removed, saving some work.
Fixes rdar://problem/38038928.
Minimize the generic class metadata template by removing the
class header and base-class members. Add back the set of
information that's really required for instantiation.
Teach swift_allocateGenericClass how to allocate classes without
superclass metadata. Reorder generic initialization to establish
a stronger phase-ordering between allocation (the part that doesn't
really care about the generic arguments) and initialization (the
part that really does care about the generic arguments and therefore
might need to be delayed to handle metadata cycles).
A similar thing needs to happen for resilient class relocation.
This is yet another waypoint on the path towards the final
generic-metadata design. The immediate goal is to make the
pattern a private implementation detail and to give the runtime
more visibility into the allocation and caching of generic types.
This new format more efficiently represents existing information, while
more accurately encoding important information about nested generic
contexts with same-type and layout constraints that need to be evaluated
at runtime. It's also designed with an eye to forward- and
backward-compatible expansion for ABI stability with future Swift
versions.
clang is miscompiling some swiftcall functions on armv7s.
Stop using swiftcall in some places until it is fixed.
Reverts c5bf2ec (#13299).
rdar://35973477
The prior refactoring to add the protocol conformance descriptor into
witness tables offset the # of requirements stored in the witness
table by 1. Address this oddity in the metadata by ensuring that the #
of requirements (and # of mandatory requirements) in the protocol
descriptor is accurate.
Don't emit placeholders for field offsets and vtable entries,
since they were always null. Instead, calculate the final size
of class metadata at runtime using the size of the superclass
metadata and the number of immediate members, and only copy
this prefix from the template to the instantiated metadata,
zero-filling the rest.
For this to work with non-generic resilient classes and
non-generic subclasses of generic classes, we need a new
runtime entry point to relocate non-generic class metadata,
calculating its size at runtime using the same strategy.
When allocating metadata for a generic class we would copy
any prefix matter from the superclass metadata, if the
superclass metadata's address point was greater than our
address point.
While we may use prefix matter for resilient metadata
in the future, I don't believe just copying bytes like
this will prove useful.
This requires the witness table accessor function to gain two new parameters: a
pointer to an array of witness tables and their count. These are then passed down
to the instantiation function which reads them out of the array and writes them
into the newly-allocated witness table.
We use the count to assert that the number of conditional witness tables passed
in is what the protocol conformance expects, which is especially useful while
the feature is still experimental: it is a compiler/runtime bug if an incorrect
number is passed.
Alter the value metadata layout to use an absolute pointer for the
nominal type descriptor rather than a relative offset relative to the
complete type metadata. Although this is slightly less efficient in
terms of load times, this is more portable across different
environments. For example, PE/COFF does not provide a cross-section
relative offset relocation. Other platform ports are unable to provide
a 64-bit relative offset encoding.
Given that the value witness table reference in the value metadata is
currently an absolute pointer, this page is most likely going to be
dirtied by the loader.
StructMetadata is now two words that the parent pointer is gone.
We need to add our own storage for the generic arguments, instead
of smashing the location where the parent pointer used to be.
My previous fix was incorrect because it would set the template
size to two words (thus we no longer read past the end of the
template) but in turn we would write past the end of the
instantiated metadata.
We no longer need this for anything, so remove it from metadata
altogether. This simplifies logic for emitting type metadata and
makes type metadata smaller.
We still pass the parent metadata pointer to type constructors;
removing that is a separate change.
- Always include an array of requirement descriptors in the protocol
descriptor. For now, this doesn't contain anything except a general
requirement kind and an optional default implementation, but eventually
this can be augmented with type / name metadata. This array is always
emitted as constant.
- Guarantee the value of the extent fields in a protocol descriptor and
slightly tweak their meaning.
- Move the private-data field out of line in a generic witness table
descriptor so that the main descriptor can be emitted as constant.
- Rely on IRGen's notion of the witness-table layout instead of assuming
that SILWitnessTable and SILDefaultWitnessTable match the actual
physical layout.
This version of the patch uses a hack in which we assign internal rather
than private linkage to certain symbols in order to work around a Darwin
linker bug.
The compiler pre-canonicalizes protocol composition types by minimizing constraints and sorting the remaining protocols by module + name, which ought to be globally stable within a program (assuming there aren't multiple modules with the same name, in which case we'll have bigger problems…). The compiler also statically lays out existential types according to its conception of the canonical composition ordering, so the runtime's own attempts to form a stable ordering lead to layout inconsistencies between runtime and compile-time layout, leading to crashes like SR-4477.
Use the generic type lowering algorithm described in
"docs/CallingConvention.rst#physical-lowering" to map from IRGen's explosion
type to the type expected by the ABI.
Change IRGen to use the swift calling convention (swiftcc) for native swift
functions.
Use the 'swiftself' attribute on self parameters and for closures contexts.
Use the 'swifterror' parameter for swift error parameters.
Change functions in the runtime that are called as native swift functions to use
the swift calling convention.
rdar://19978563
Changes:
* Terminate all namespaces with the correct closing comment.
* Make sure argument names in comments match the corresponding parameter name.
* Remove redundant get() calls on smart pointers.
* Prefer using "override" or "final" instead of "virtual". Remove "virtual" where appropriate.
MetadataCache's allocator into it.
The major functional change here is that MetadataCache will now use
the slab allocator for tree nodes, but I also switched the Hashable
conformances cache to use ConcurrentMap directly instead of a
Lazy<ConcurrentMap<>>.