When a pattern within a type context is serialized, serialize its
interface type (not its contextual type). When deserializing, record
the interface type and keep a side table of the associated
DeclContext, so that we can lazily map to the contextual type on first
access. This is designed to break recursion when we change the way
archetypes and generic environments are serialized.
Only serialize the interface types of parameter declarations into the
module file, then lazily build the contextual types when
requested. This saves a small amount of space in the Swift module
files (~64k for the Swift standard library) and some effort on load.
First, ensure all ParamDecls that are synthesized from scratch are given
both a contextual type and an interface type.
For ParamDecls written in source, add a new recordParamType() method to
GenericTypeResolver. This calls setType() or setInterfaceType() as
appropriate.
Interestingly enough a handful of diagnostics in the test suite have
improved. I'm not sure why, but I'll take it.
The ParamDecl::createUnboundSelf() method is now only used in the parser,
and no longer sets the type of the self parameter to the unbound generic
type. This was wrong anyway, since the type was always being overwritten.
This allows us to remove DeclContext::getSelfTypeOfContext().
Also, ensure that FuncDecl::getBodyResultTypeLoc() always has an interface
type for synthesized declarations, eliminating a mapTypeOutOfContext()
call when computing the function interface type in configureInterfaceType().
Finally, clean up the logic for resolving the DynamicSelfType. We now
get the interface or contextual type of 'Self' via the resolver, instead
of always getting the contextual type and patching it up inside
configureInterfaceType().
A pointless use of polymorphism -- the result values are not
interchangeable in any practical sense:
- For GenericTypeParamDecls, this returned getDeclaredInterfaceType(),
which is an interface type.
- For AssociatedTypeDecls, this returned the sugared AssociatedTypeType,
which desugars to an archetype.
- For TypeAliasDecls, this returned TypeAliasDecl::getAliasType(),
which desugars to a type containing archetypes.
- For NominalTypeDecls, this returned NominalTypeDecl::getDeclaredType(),
which is the unbound generic type, a special case used for inferring
generic arguments when they're not written in source.
Previously, getInterfaceType() would return getType() if no
interface type was set. Instead, always set an interface type
explicitly.
Eventually we want to remove getType() altogether, and this
brings us one step closer to this goal.
Note that ParamDecls are excempt from this treatment, because
they don't have a proper interface type yet. Cleaning this up
requires more effort.
The uses of this function that want *all* nested types now go through
an entry point getAllNestedTypes(), and will need to be removed to
support recursive protocol constraints.
The uses of this function that only want to see what's been expanded
so far---dumpers and verifiers, mainly---can use
getKnownNestedTypes(), which may change type but is a reasonable
operation to continue using.
Previously, getInterfaceType() would return getType() if no
interface type was set. Instead, always set an interface type
explicitly.
Eventually we want to remove getType() altogether, and this
brings us one step closer to this goal.
Note that ParamDecls are excempt from this treatment, because
they don't have a proper interface type yet. Cleaning this up
requires more effort.
An environment is always associated with a location with a signature, so
having them separate is pointless duplication. This patch also updates
the serialization to round-trip the signature data.
The witnesses in a NormalProtocolConformance have never been
completely serialized, because their substitutions involved a weird
mix of archetypes that blew up the deserialization code. So, only the
witness declarations themselves got serialized. Many clients (the type
checker, SourceKit, etc.) didn't need the extra information, but some
clients (e.g., the SIL optimizers) would end up recomputing this
information. Ick.
Now, serialize the complete Witness structure along with the AST,
including information about the synthetic environment, complete
substitutions, etc. This should obsolete some redundant code paths in
the SIL optimization infrastructure.
This (de-)serialization code takes a new-ish approach to serializing
the synthetic environment in that it avoids serializing any
archetypes. Rather, it maps everything back to interface types during
serialization, and deserialization forms a new generic environment
(with new archetypes!) on-the-fly, mapping deserialized types back
into that environment (and to those archetypes). This way, we don't
have to maintain identity of archetypes in the deserialization code,
and might get some better re-use of the archetypes.
More of rdar://problem/24079818.
We don't want the machine calling conventions for closure invocation functions to necessarily be tied to the convention for normal thin functions or methods. NFC yet; for now, 'closure' follows the same behavior as the 'method' convention, but as part of partial_apply simplification it will be a requirement that partial_apply takes a @convention(closure) function and a box and produces a @convention(thick) function from them.
llvm r283043 and possibly other recent changes switch to use StringRef
instead of char* pointers. Update Swift to match. In some cases, this is
a clear improvement. It would be good to assess the impact on memory use,
particularly for the Filename component of source locations.
Note that the change to SILLocation::isNull fixes an apparent bug where
the location was treated as null when the filename was *not* null.
Sugared GenericTypeParamTypes point to GenericTypeParamDecls,
allowing the name of the parameter as written by the user to be
recovered. Canonical GenericTypeParamTypes on the other hand
only store a depth and index, without referencing the original
declaration.
When printing SIL, we wish to output the original generic parameter
names, even though SIL only uses canonical types. Previously,
we used to accomplish this by mapping the generic parameter to an
archetype and printing the name of the archetype. This was not
adequate if multiple generic parameters mapped to the same
archetype, or if a generic parameter was mapped to a concrete type.
The new approach preserves the original sugared types in the
GenericEnvironment, adding a new GenericEnvironment::getSugaredType()
method.
There are also some other assorted simplifications made possible
by this.
Unfortunately this makes GenericEnvironments use a bit more memory,
however I have more improvements coming that will offset the gains,
in addition to making substitution lists smaller also.
This is another problem (like 5356cc3) exposed by building with a newer
version of Clang. Construct a temporary SmallVector when needed to create
an ArrayRef.
This would have allowed us to triage rdar://problem/28305755 much
sooner. The actual problem is pretty bad: if you have too many methods
with the same selector, serialization just falls over. "Too many" is
in the thousands, which seems unlikely, but 'dealloc' can actually get
there if there are a lot of little classes, and 'init' might as well,
so we really should do better here.
RequirementReprs stored serialized references to archetypes,
which do not have enough information to reconstruct same-type
requirements.
For this reason, we would serialize the 'as written' requirement
string as well as the actual types, which is a horrible hack.
Now that the ASTPrinter and SourceKit use GenericSignatures,
none of this is needed anymore.
There's a bit of a hack to deal with generic typealiases, but
overall this makes things more logical.
This is the last big refactoring before we can allow constrained
extensions to make generic parameters concrete. All that remains
is a small set of changes to SIL type lowering, and retooling
some diagnostics in Sema.
Long term, we want to refactor the AST to reflect the current
programming model in Swift. This would include refactoring
FunctionType to take a list of ParameterTypeElt, or something with a
better name, that can contain both the type and flags/bits that are
only specific to types in parameter position, such as @autoclosure and
@escaping. At the same time, noescape-by-default has severely hurt our
ability to print types without significant context, as we either have
to choose to too aggressively print @escaping or not print it in every
situation it occurs, or both.
As a gentle step towards the final solution, without uprooting our
overall AST structure, and as a way towards fixing the @escaping
printing ails, put these bits on the TupleTypeElt and ParenType, which
will serve as a model for what ParameterTypeElt will be like in the
future. Re-use these flags on CallArgParam, to leverage shared
knowledge in the type system. It is a little painful to tack onto
these types, but it's minor and will be overhauled soon, which will
eventually result in size savings and less complexity overall.
This includes all the constraint system adjustments to make these
types work and influence type equality and overload resolution as
desired. They are encoded in the module format. Additional tests
added.
This flag switches the "effective language version" of the compiler,
at least to any version supported (as of this change: "3" or "3.0").
At the moment nothing uses it except the language version build
configuration statements (#if swift(...)) and various other places
that report, encode, or otherwise check version numbers.
In the future, it's intended as scaffolding for backwards compatibility.
Fixes SR-2582
The new instructions are: ref_tail_addr, tail_addr and a new attribute [ tail_elems ] for alloc_ref.
For details see docs/SIL.rst
As these new instructions are not generated so far, this is a NFC.
The new instructions are: ref_tail_addr, tail_addr and a new attribute [ tail_elems ] for alloc_ref.
For details see docs/SIL.rst
As these new instructions are not generated so far, this is a NFC.
We were optimizing away unused pattern binding initializer contexts in
both the parser and in semantic analysis, which led to a
somewhat-unpredictable set of DeclContexts in the AST. Normalize
everything by always creating these contexts.
Now that SILFunctions no longer reference a GenericParamList, we
don't need to de-serialize cross-module references to archetypes
anymore.
This was the last remaining usage of AllArchetypes, so we can
finally rip it out.
A GenericEnvironment stores the mapping between GenericTypeParamTypes
and context archetypes (or eventually, concrete types, once we allow
extensions to constrain a generic parameter to a concrete type).
The goals here are two-fold:
- Eliminate the GenericTypeParamDecl::getArchetype() method, and
always use mapTypeIntoContext() instead
- Replace SILFunction::ContextGenericParams with a GenericEnvironment
This patch adds the new data type as well as serializer and AST
verifier support. but nothing else uses it yet.
Note that GenericSignature::get() now asserts if there are no
generic parameters, instead of returning null. This requires a
few tweaks here and there.
I don't see any tests failing with this code removed; I guess
either the duplicate archetype issue no longer occurs, or does
not matter since we use interface types almost everywhere
when talking about Decls from other modules.