'MacroExpansionDecl' and 'MacroExpansionExpr' have many common methods.
Introduce a common base class 'FreestandingMacroExpansion' that holds
'MacroExpansionInfo'.
Factor out common expansion logic to 'evaluateFreestandingMacro'
function that resembles 'evaluateAttachedMacro'.
Direct lookup relied in primary file checking to have filled in the
protocol type stored in the ImplementsAttr. This was already wrong
with multi-file test cases in non-WMO mode, and crashed in the
ASTPrinter if printing a declaration in a non-primary file.
I don't have a standalone test case that is independent of my
upcoming ASTPrinter changes, but this is a nice cleanup regardless.
This can't happen yet, but with an upcoming change, we hit an infinite
recursion here with PackExpansionType::get() -> getReducedShape()
-> mapTypeIntoContext() -> PackExpansionType::get().
Calls to getters are implicit because the compiler inserts them on a property
access, but the location is useful in backtraces so it should be preserved.
rdar://109123395
Keep track of those types and extensions that have any macro expansions,
so that when we need to check whether to expand macros to satisfy name
lookup, we only look through that list---rather than looking at every
extension again.
This improves compile times significantly for a source file with a
large number of extensions on a single type. However, there is still
much to do here.
Keep track of which types/extensions have members that could be produced by
a macro expansion, including the names of those members. Use this to
avoid walking into extensions or type definitions to expand macros
when they don't have any related macros.
When performing an implicit module build, the frontend was prepending
`-target-min-inlining-target target` to the command line. This was overriding
the implicit `-target-min-inlining-target min` argument that is implied when
`-library-level api` is specified. As a result, the wrong overload could be
picked when compiling the body of an inlinable function to SIL for emission
into the client, potentially resulting in crashes when the client of the module
is back deployed to an older OS.
Resolves rdar://109336472
Setting closure and local discriminators depends on an in-order walk
of the AST. For macros, it was walking into both macro expansions and
arguments. However, this doesn't work well with lazy macro expansions,
and could result in some closures/local variables not getting
discriminators set at all.
Make the assignment of discriminators only walk macro arguments, and
then lazily assign discriminators for anything within a macro
expansion or in ill-formed code. This replaces the single global "next
autoclosure discriminator" scheme with a per-DeclContext scheme, that
is more reliable/robust, although it does mean that discriminators
of closures and locals within macro expansions are dependent on
ordering. That shouldn't matter, because these are local values.
Fixes rdar://108682196.
Some notes:
1. I put in both a swiftpm like test case and a library evolution test case. I
also updated the moveonly_deinit serialization swift test to show that we
actually serialize the deinit.
2. I changed when we emit the deinit table to only be when we have a type with
an actual value type destructor. Notably this doesn't include classes today so
as a side-effect, we no longer attempt to devirtualize moveonly class deinits.
This doesn't affect anything we are trying to actually do since we do not
support noncopyable classes today. With that in mind, I changed one test that
was showing that deinit devirtualization worked to use a struct with deinit
instead of a class.
rdar://109679168
Use the `attempting forced recovery` diagnostic as main warning to which
we attach other messages as notes. Also mention the flag in the
diagnostic to reinforce that the flag is active.
Intro a deserialization mode controlled by the flag
`-experimental-force-workaround-broken-modules` to attempt unsafe
recovery from deserialization failures caused by project issues.
The one issue handled at this time is when a type moves from one module
to another. With this new mode the compiler may be able to pick a
matching type in a different module. This is risky to use, but may help
in a pinch for a client to fix and issue in a library over which they
have no control.
* Add @_used and @_section attributes for global variables and top-level functions
This adds:
- @_used attribute that flags as a global variable or a top-level function as
"do not dead-strip" via llvm.used, roughly the equivalent of
__attribute__((used)) in C/C++.
- @_section("...") attribute that places a global variable or a top-level
function into a section with that name, roughly the equivalent of
__attribute__((section("..."))) in C/C++.