Use the modern spelling for the nullability attributes in the test mock
headers. Currently, this was relying on the predefined macros from
clang to work. However, those are only available on Darwin targets.
This is needed to make the mock environments more portable.
Logs a warning the first time a problematic class is archived or
unarchived. We expect people to actually fix these issues, so the
performance of the warning isn't too important.
Sample output:
[timestamp] Attempting to archive Swift class '_Test.Outer.ArchivedThenUnarchived', which does not have a stable runtime name.
[timestamp] Use the 'objc' attribute to ensure that the runtime name will not change: "@objc(_TtCC5_Test5Outer22ArchivedThenUnarchived)"
[timestamp] If there are no existing archives containing this class, you can choose a unique, prefixed name instead: "@objc(ABCArchivedThenUnarchived)"
Finishes rdar://problem/32414508
This function checks if a mangled class name is going to be written into an NSArchive.
If yes, a warning should be printed and the return value should indicate that.
TODO: print the actual warning
rdar://problem/32414508
This time, the warnings only fire when the class in question directly
conforms to NSCoding. This avoids warning on cases where the user has
subclassed something like, oh, UIViewController, and has no intention
of writing it to a persistent file.
This also removes the warning for generic classes that conform to
NSCoding, for simplicity's sake. That means
'@NSKeyedArchiverEncodeNonGenericSubclassesOnly' is also being
removed.
Actually archiving a class with an unstable mangled name is still
considered problematic, but the compiler shouldn't emit diagnostics
unless it can be sure they are relevant.
rdar://problem/32314195
This is accomplished by recognizing this specific situation and
replacing the 'objc' attribute with a hidden '_objcRuntimeName'
attribute. This /only/ applies to classes that are themselves
non-generic (including any enclosing generic context) but that have
generic ancestry, and thus cannot be exposed directly to Objective-C.
This commit also eliminates '@NSKeyedArchiverClassName'. It was
decided that the distinction between '@NSKeyedArchiverClassName' and
'@objc' was too subtle to be worth explaining to developers, and that
any case where you'd use '@NSKeyedArchiverClassName' was already a
place where the ObjC name wasn't visible at compile time.
This commit does not update diagnostics to reflect this change; we're
going to change them anyway.
rdar://problem/32414557
Only emit calls to Builtin.swift3ImplicitObjCEntrypoint() when we are
in Swift 4 mode with `-enable-swift3-objc-inference`, which is a
transitional state in which one is debugging the use of the
deprecated @objc entrypoints. Fixes rdar://problem/32122408.
Like NSObject, CFType has primitive operations CFEqual and CFHash,
so Swift should allow those types to show up in Hashable positions
(like dictionaries). The most general way to do this was to
introduce a new protocol, _CFObject, and then have the importer
automatically make all CF types conform to it.
This did require one additional change: the == implementation that
calls through to CFEqual is in a new CoreFoundation overlay, but the
conformance is in the underlying Clang module. Therefore, operator
lookup for conformances has been changed to look in the overlay for
an imported declaration (if there is one).
This re-applies 361ab62454, reverted in
f50b1e73dc, after a /very/ long interval
where we decided if it was worth breaking people who've added these
conformances on their own. Since the workaround isn't too difficult---
use `#if swift(>=3.2)` to guard the extension introducing the
conformance---it was deemed acceptable.
https://bugs.swift.org/browse/SR-2388
Register class names for NSKeyedArchiver and NSKeyedUnarchiver based on the @NSKeyedArchiveLegacy and @_staticInitializeObjCMetadata class attributes.
@NSKeyedArchiveLegacy registers a class name translation.
@_staticInitializeObjCMetadata just makes sure that the metadata of a class is instantiated.
This registration code is executed as a static initializer, like a C++ global constructor.
Introduce the @NSKeyedArchiveSubclassesOnly attribute, which can be
placed on a class that conforms to NSCoding to suppress the
unstable-name diagnostics by promising to only archive
subclasses---not this class directly.
This attribute allows one to provide the "legacy" name of a class for
the purposes of archival (via NSCoding). At the moment, it is only
useful for suppressing the warnings/errors about classes with unstable
archiving names.
The name mangling changed from Swift 3 to Swift 4, and may get slight
tweaks as we lock down ABI stability. Identify and warn about (in
Swift 3) or error about (in Swift 4) the cases where we don't have
obviously-stable name mangling, e.g.,
* private/fileprivate classes (whose mangled names involve the file name)
* nested classes (whose mangled names depend on their enclosing type)
* generic classes (whose mangled names involve the type arguments)
This only affects the textual output, but should still improve the
experience when we /do/ hit one of these LLVM errors. In addition to
showing up better in Xcode, it'll also give us a proper
PrettyStackTrace because of the call to abort() instead of exit(1).
(There's a bit of finger-crossing that the act of printing the
diagnostic doesn't cause more errors. I only tested the fallback
path a little.)
Provide SIMCTL_CHILD_ environment variables as well, which get passed along to the child of simctl. Additionally, use StdlibUnittest to handle the crash instead of `not —crash`, which doesn’t work through simctl.
Introduce a new runtime entry point,
`swift_objc_swift3ImplicitObjCEntrypoint`, which is called from any
Objective-C method that was generated due to `@objc` inference rules
that were removed by SE-0160. Aside from being a central place where
users can set a breakpoint to catch when this occurs, this operation
provides logging capabilities that can be enabled by setting the
environment variable SWIFT_DEBUG_IMPLICIT_OBJC_ENTRYPOINT:
SWIFT_DEBUG_IMPLICIT_OBJC_ENTRYPOINT=0 (default): do not log
SWIFT_DEBUG_IMPLICIT_OBJC_ENTRYPOINT=1: log failed messages
SWIFT_DEBUG_IMPLICIT_OBJC_ENTRYPOINT=2: log failed messages with
backtrace
SWIFT_DEBUG_IMPLICIT_OBJC_ENTRYPOINT=3: log failed messages with
backtrace and abort the process.
The log messages look something like:
***Swift runtime: entrypoint -[t.MyClass foo] generated by
implicit @objc inference is deprecated and will be removed in
Swift 4
It also uses the new mangling for type names in meta-data (except for top-level non-generic classes).
lldb has now support for new mangled metadata type names.
This reinstates commit 21ba292943.
For this we are linking the new re-mangler instead of the old one into the swift runtime library.
Also we are linking the new de-mangling into the swift runtime library.
It also switches to the new mangling for class names of generic swift classes in the metadata.
Note that for non-generic class we still have to use the old mangling, because the ObjC runtime in the OS depends on it (it de-mangles the class names).
But names of generic classes are not handled by the ObjC runtime anyway, so there should be no problem to change the mangling for those.
The reason for this change is that it avoids linking the old re-mangler into the runtime library.