"Accessibility" has a different meaning for app developers, so we've
already deliberately excised it from our diagnostics in favor of terms
like "access control" and "access level". Do the same in the compiler
now that we aren't constantly pulling things into the release branch.
Rename AccessibilityAttr to AccessControlAttr and
SetterAccessibilityAttr to SetterAccessAttr, then track down the last
few uses of "accessibility" that don't have to do with
NSAccessibility. (I left the SourceKit XPC API alone because that's
supposed to be more stable.)
"Accessibility" has a different meaning for app developers, so we've
already deliberately excised it from our diagnostics in favor of terms
like "access control" and "access level". Do the same in the compiler
now that we aren't constantly pulling things into the release branch.
This commit changes the 'Accessibility' enum to be named 'AccessLevel'.
Pushes __consuming through the frontend and extends existing
attribute-based diagnsotics to cover it. Unlike `nonmutating`,
__consuming is allowed in class methods, though it makes little
sense to put it there.
This shows up with swift_wrapper typedefs, which get imported into
Swift as structs. If someone makes an extension of a swift_wrapper
type, but the swift_wrapper is only applied in Swift 4 mode, that
extension will break any Swift 3 clients. Recover by just dropping
the extension entirely.
There's still more complexity around extensions---what if a
requirement can't be deserialized? what if something's depending on
the protocol conformance provided by the extension?---but the missing
base type case should be pretty safe. If you can't see the type at
all, things that depend on its conformances are already in trouble.
rdar://problem/33636733
* Generate libSyntax API
This patch removes the hand-rolled libSyntax API and replaces it with an
API that's entirely automatically generated. This means the API is
guaranteed to be internally stylistically and functionally consistent.
When there's an Objective-C protocol that adopts other protocols, the
other protocols become part of the requirement signature. If that can
change, Swift conformances to that protocol will get very confused
when it comes time to deserialize the conformances that satisfy the
requirement signature.
To recover from this, just deserialize /all/ trailing conformances,
rather than follow the requirement signature, and match them up after
the fact. (This only works for Objective-C protocols where we know all
conformance requirements represent inherited protocols, as opposed to
constraints on associated types.)
rdar://problem/33356098
Also, begin to pass around base types instead of raw InOutType types. Ideally, only Sema needs to deal with them, but this means that a bunch of callers need to unwrap any inouts that might still be lying around before forming these types.
Multiple parts of the compiler were slicing, dicing, or just dropping these flags. Because I intend to use them for the new function type representation, I need them to be preserved all across the compiler. As a first pass, this stubs in what will eventually be structural rules as asserts and tracks down all callers of consequence to conform to the new invariants.
This is temporary.
We use this to avoid circularity issues in serialization; we'd like to
extend that to the Clang importer. This is only necessary because we
can't look up a single member at a time, but it can still fix issues
in the short term.
This commit should have no effect on functionality.
Special DeclNames represent names that do not have an identifier in the
surface language. This implies serializing the information about whether
a name is special together with its identifier (if it is not special)
in both the module file and the swift lookup table.
Using these in declaration position has been deprecated and
removed in Swift 3. These attributes were not being parsed and
contained deadweight diagnostics that should have been moved
when these attributes became type attributes.
In anticipation of future attributes, and perhaps the ability to
declare lvalues with specifiers other than 'let' and 'var', expand
the "isLet" bit into a more general "specifier" field.
The outside representation already went to a flat set of requirements;
make the internal representation match so we aren't tempted to use the
requirement signature as inputs to a generic signature.
Rather than pretend that the requirement signature of a protocol is a
full, well-formed generic signature that one can meaningfully query,
treat it as a flat set of requirements. Nearly all clients already did
this, but make it official. NFC
With the introduction of special decl names, `Identifier getName()` on
`ValueDecl` will be removed and pushed down to nominal declarations
whose name is guaranteed not to be special. Prepare for this by calling
to `DeclBaseName getBaseName()` instead where appropriate.
Printing a declaration's name using `<<` and `getBaseName()` is be
independent of the return type of `getBaseName()` which will change in
the future from `Identifier` to `DeclBaseName`
Layout for an enum depends very intimately on its cases---both their
existence and what their payload types are. That means there's no way
to "partly" recover from failure to deserialize an individual case's
payload type, the way we can partly recover from failing to
deserialize an initializer in a class. Add deserialization recovery
to enums by validating all of their payload types up front, and
dropping the enum if we can't import all of the cases.
This is the first time where we're trying to do deserialization
recovery for a /type/, and that could have many more ripple effects
than for a var/func/subscript/init. A better answer here might be to
still import the enum but mark it as unavailable, but in that case
we'd have to make sure to propagate that unavailability to anything
that /used/ the enum as well. (In Swift, availability is checked based
on use of the name, so if someone manages to refer to an enum using
inferred types we'd be in trouble.)
There is one case here that's not covered: if an enum case has a
payload that references a type declaration nested within the enum, but
then that nested type /itself/ can't be loaded for some reason, we
have no way to check that up front, because we can't even try to load
the nested type without loading its parent DeclContext (the enum). I
can't think of an easy solution for this right now.
(In the future, we'll be able to support dropping a single case for
resilient enums. But we're not there right now.)
rdar://problem/31920901
Previously we recorded the canonical type of the declaration and made
sure we could deserialize that, but that's a lot of extra work
building up intermediate types that we mostly don't need. Instead,
record smaller types that represent the possible points of failure---
right now, just the nominal types that are referenced by the value
(function, variable/constant, subscript, or initializer). I chose to
use types instead of declarations here because types can potentially
encode more complicated constraints later (such as generic types
checking that their arguments still conform).
This gains us back 20% of type-checking time on a compile-time
microbenchmark: `let _ = [1, 2]`. I expect the effect is less dramatic
the more expressions you have, since we only need to deserialize
things once.
Fixes a class of deserialization issues in the merge-modules
step.
The setup was the following:
- File A defines a typealias A whose underlying type is a nested
type S of a type T, defined in a different module.
- File B defines an extension of T, and the extension member's
type references A.
When deserializing A, we would proceed to deserialize the
underlying type, which references T.S. This would first deserialize
T and perform a name lookup to find S, which would deserialize all
members, including pulling in extensions. Deserialization of the
extension defined in file B would then fail, because the declaration
for A is not yet available.
We had a previous fix for these problems in the single-module case;
a per-file lookup table mapping mangled nested type names to
declarations, allowing a nested type to be deserialized without
pulling in all members and extensions of its parent type.
This patch generalizes the nested type lookup table allowing it to
be used to resolve cross-module references as well. Also, we were
only writing out the nested type table when serializing a partial
swiftmodule corresponding to a source file. Removing this check
allows the nested type table to be serialized for modules built
with WMO enabled as well, such as the standard library.
Fixes <rdar://problem/30976604> and
<https://bugs.swift.org/browse/SR-4208>.
Make generic environment deserialization lazy, which eliminates a
significant amount of up-front work. Most clients only need the
generic signature, not the full generic environment.
This isn't an inherent limitation of the language---in fact, it would
be a problem for library evolution if you had to know a superclass's
full vtable contents to generate the vtable for a subclass. However,
that's exactly where we are today, and that's not going to change for
Swift 4.
One small hole in the Swift 3 / Swift 4 story.
More rdar://problem/31878396
This means both not crashing when we deserialize the protocol but
also emitting correct offsets for dynamic dispatch through the
protocol's witness table.
Also fix a bug with vtable and witness table slots for
materializeForSet accessors for properties that can't be
imported. Because materializeForSet doesn't have the type of the
property in its signature, it was taking a different failure path from
everything else, and that failure path didn't properly set the name or
flags for the missing member.
Finishes rdar://problem/31878396
As such, we no longer insert two placeholders for initializers that
need two vtable slots; instead we record that in the
MissingMemberDecl. I can see MissingMemberDecl growing to be something
we'd actually show to users, that can be used for other kinds of
declarations that don't have vtable entries, but for now I'm not going
to worry about any of that.
That is, whether an initializer is 'required', and either does not
override anything or overrides a non-required initializer. We don't
use this for anything now, but it'll show up in the next commit.
Deserializing a witness record in a conformance may fail if either of the requirement or witness changed name or type, most likely due to SDK modernization changes across Swift versions. When this happens, leave an opaque placeholder in the conformance to indicate that the witness exists but we don't get to see it. For expedience, right now this just witnesses the requirement to itself, so that code in the type checker or elsewhere that tries to ad-hoc devirtualize references to the requirement just gets the requirement back. Arguably, we shouldn't include the witness at all in imported conformances, since they should be an implementation detail, but that's a bigger, riskier change. This patch as is should be enough to address rdar://problem/31185053.