I can't actually reproduce the buildbot failure that happened last night, so
hopefully it will (a) happen again, so I can investigate, or (b) not happen
again.
Swift SVN r22230
Now the SILLinkage for functions and global variables is according to the swift visibility (private, internal or public).
In addition, the fact whether a function or global variable is considered as fragile, is kept in a separate flag at SIL level.
Previously the linkage was used for this (e.g. no inlining of less visible functions to more visible functions). But it had no effect,
because everything was public anyway.
For now this isFragile-flag is set for public transparent functions and for everything if a module is compiled with -sil-serialize-all,
i.e. for the stdlib.
For details see <rdar://problem/18201785> Set SILLinkage correctly and better handling of fragile functions.
The benefits of this change are:
*) Enable to eliminate unused private and internal functions
*) It should be possible now to use private in the stdlib
*) The symbol linkage is as one would expect (previously almost all symbols were public).
More details:
Specializations from fragile functions (e.g. from the stdlib) now get linkonce_odr,default
linkage instead of linkonce_odr,hidden, i.e. they have public visibility.
The reason is: if such a function is called from another fragile function (in the same module),
then it has to be visible from a third module, in case the fragile caller is inlined but not
the specialized function.
I had to update lots of test files, because many CHECK-LABEL lines include the linkage, which has changed.
The -sil-serialize-all option is now handled at SILGen and not at the Serializer.
This means that test files in sil format which are compiled with -sil-serialize-all
must have the [fragile] attribute set for all functions and globals.
The -disable-access-control option doesn't help anymore if the accessed module is not compiled
with -sil-serialize-all, because the linker will complain about unresolved symbols.
A final note: I tried to consider all the implications of this change, but it's not a low-risk change.
If you have any comments, please let me know.
Swift SVN r22215
conformances (22195 to 22199).
It broke tests:
Failing Tests (4):
Swift :: Interpreter/SDK/Foundation_NSString.swift
Swift :: SIL/Serialization/deserialize_appkit.sil
Swift :: SIL/Serialization/deserialize_foundation.sil
Swift :: stdlib/NSStringAPI.swift
Swift SVN r22214
We add two more fields to SILGlobalVariable: a VarDecl and a flag to see if this
is a declaration. VarDecl is mainly used for debugger support, it is also used
to check if the variable is weak imported.
We also modify the serializer to serialize the extra two fields.
Swift SVN r21883
This is necessary to be able to properly stash values with nontrivial lowerings, such as metatypes and functions, inside existential containers. Modify SILGen to lower values to the proper abstraction level before storing them in an existential container. Part of the fix for rdar://problem/18189508, though runtime problems still remain when trying to actually dynamicCast out a metatype from an Any container.
Swift SVN r21830
This will let the performance inliner inline a function even if the costs are too high.
This attribute is only a hint to the inliner.
If the inliner has other good reasons not to inline a function,
it will ignore this attribute. For example if it is a recursive function (which is
currently not supported by the inliner).
Note that setting the inline threshold to 0 does disable performance inlining at all and in
this case also the @inline(__always) has no effect.
Swift SVN r21452
This disables inlining at the SIL level. LLVM inlining is still enabled. We can
use this to expose one function at the SIL level - which can participate in
dominance based optimizations but which is implemented in terms of a cheap check
and an expensive check (function call) that benefits from LLVM's inlining.
Example:
The inline(late) in the example below prevents inlining of the two checks. We
can now perform dominance based optimizations on isClassOrObjExistential.
Without blocking inlining the optimizations would apply to the sizeof check
only and we would have multiple expensive function calls.
@inline(late)
func isClassOrObjExistential(t: Type) -> Bool{
return sizeof(t) == sizeof(AnyObject) &&
swift_isClassOrObjExistential(t)
}
We do want inlining of this function to happen at the LLVM level because the
first check is constant folded away - IRGen replaces sizeof by constants.
rdar://17961249
Swift SVN r21286
*NOTE* This linkage is different from {Public,Hidden}External in that it has no
extra semantic meaning beyond shared.
The use of this linkage is to ensure that we do not serialize deserialized
shared functions. Those shared functions can always be re-deserialized from the
original module. This prevents a whole class of bugs related to the
creation of module cross references since all references to the shared
item go straight to the original module.
<rdar://problem/17772847>
Swift SVN r20375
Enable SIL parsing and SIL serialization of semantics.
We add one more field to SILFunctionLayout for semantics. We should refactor
handling of attributes at SIL level, right now they are in SILFunction as bool
or std::string and in SIL serializer as a 1-bit field or an ID field.
rdar://17525564
Swift SVN r19434
The implied semantics are:
- side-effects can occur any time before the first invocation.
- all calls to the same global_init function have the same side-effects.
- any operation that may observe the initializer's side-effects must be
preceded by a call to the initializer.
This is currently true if the function is an addressor that was lazily
generated from a global variable access. Note that the initialization
function itself does not need this attribute. It is private and only
called within the addressor.
Swift SVN r16683
This will help with ensuring that we do not create multiple witness
table "definitions" one of which is null. That situtation yields an
IRGen assertion to be hit since the external declaration (in the guise
of a definition) has a different type from the actual deserialized
definition.
Swift SVN r14999
In the short term, we need to be able to emit shared symbols for SILWitnessTables corresponding to Clang-imported modules, and soon, the generic specializer will need to be able to reference *_external witness tables deserialized from library modules.
Swift SVN r14887
Edge SILFunction one step closer to independence from SILFunctionType context by taking the generic param list as a separate constructor parameter, and serializing those params alongside the function record. For now we still pass in the context params from the SILFunctionType in most cases, because the logic for finding the generic params tends to be entangled in type lowering, but this pushes the problem up a step.
Thanks Jordan for helping work out the serialization changes needed.
Compared to r13036, this version of the patch includes the decls_block RecordKind enumerators for the GENERIC_PARAM_LIST layouts in the sil_block RecordKind enumerator, as Jordan had suggested before. r13036 caused buildbot failures when building for iOS, but I am unable to reproduce those failures locally now.
Swift SVN r13485
Edge SILFunction one step closer to independence from SILFunctionType context by taking the generic param list as a separate constructor parameter, and serializing those params alongside the function record. For now we still pass in the context params from the SILFunctionType in most cases, because the logic for finding the generic params tends to be entangled in type lowering, but this pushes the problem up a step.
Thanks Jordan for helping work out the serialization changes needed.
Swift SVN r13036
We add two records in sil_block to specify a witness table record and a method
entry record. Out of the four entry types, only "Method" is handled in this
commit.
Two records are also added to sil_index_block to search for a specific witness
table given a unique identifier. The interface lookupWitnessTable is not
implemented yet.
Right now, we serialize a witness table only when sil-serialize-all is on and
deserialize all witness tables in the module when sil-link-all is on.
rdar://15722175
Swift SVN r13000
When we decide to emit a separate ivar initializer method (via the
Objective-C entry point -.cxx_construct), we no longer initialize the
ivars within the initializer. This only happens for derived classes,
so teach DI about uninitialized 'self' values that require a
super.init call but don't require the ivars to be initialized.
Swift SVN r12240
In general, this forces SILGen and IRGen code that's grabbing
a declaration to state whether it's doing so to define it.
Change SIL serialization to serialize the linkage of functions
and global variables, which means also serializing declarations.
Change the deserializer to use this stored linkage, even when
only deserializing a declaration, and to call a callback to
inform the client that it has deserialized a new entity.
Take advantage of that callback in the linking pass to alter
the deserialized linkage as appropriate for the fact that we
imported the declaration. This computation should really take
advantage of the relationship between modules, but currently
it does not.
Swift SVN r12090
Attribute field is a fixed 2-bit field, but cast kind exceeds 4,
so using 2-bit attribute field for cast kind will cause overflow.
The fix is to add a record for the cast instruction with a 4-bit
kind field instead of a 2-bit attribute field.
Swift SVN r11938
SIL instruction. Implement IR-gen support for same. Fix
the parsing of SIL string literals to properly unescape them.
SIL-gen still emits UTF8 literals unconditionally.
Swift SVN r11904
Make ApplyInst and PartialApplyInst directly take substitutions for generic functions instead of trying to stage out substitutions separately. The legacy reasons for doing this are gone.
Swift SVN r8747
Handle the following SILInstructions:
DeallocBoxInst ArchetypeMetatypeInst ClassMetatypeInst ProtocolMetatypeInst
AllocRefInst DeallocRefInst StoreWeakInst AssignInst
Add an optional 2-bit field for instruction attributes to
SILOneValueOneOperandLayout.
Swift SVN r8418
Handle the following SILInstructions:
LoadWeakInst,
Checked Conversion instructions:
DowncastInst, SuperToArchetypeRefInst,
DowncastArchetypeAddrInst, DowncastArchetypeRefInst,
ProjectDowncastExistentialAddrInst, DowncastExistentialRefInst
Add an optional 2-bit field for instruction attributes to SILOneOperandLayout
and SILOneTypeOneOperandLayout.
Update SILPrinter to print [take] for LoadWeakInst.
Swift SVN r8416
Add command line argument -sil-link-all and -sil-serialize-all for testing
purpose.
Do not create new SILFunction for de-serialized SIL, instead update the
existing declaration with the de-serialized SILFunction.
Add testing case to cover partial_apply.
Swift SVN r8410
Add serialization/deserialization of the following SILInstructions:
BuiltinFunctionRefInst, IndexRawPointerInst, ModuleInst,
Conversion instructions:
RefToObjectPointerInst, UpcastInst, CoerceInst, AddressToPointerInst,
PointerToAddressInst, ObjectPointerToRefInst, RefToRawPointerInst,
RawPointerToRefInst, RefToUnownedInst, UnownedToRefInst
DestroyAddrInst, LoadInst, StrongReleaseInst, StrongRetainInst,
TupleElementAddrInst, TupleExtractInst
Make getModule in ModuleFile public to be used by SILDeserializer, also
make addModuleRef in Serializer public to be used by SILSerializer.
Update testing case to cover the above SILInstructions.
Swift SVN r8372
Use a worklist in SIL linking to traverse the newly serialized SILFunction.
Add serialization/deserialization of the following SILInstructions:
AllocArray, Apply, FunctionRef, IntegerLiteral, Metatype, StructExtract,
Struct and Tuple.
Make getDecl and getIdentifier in ModuleFile public to be used by
SILDeserializer, also make addDeclRef and addIdentifierRef in Serializer
public to be used by SILSerializer.
Update testing case to cover the above SILInstructions.
TODO: lookupSILFunction should replace the existing empty SILFunction instead
of creating a new SILFunction.
Swift SVN r8339