remapRequirements() was doing a whole lot of substitution work by
itself that the GenericSignatureBuilder is already capable of
doing. Use the GSB's functionality instead.
Rather than true (an error occurred) or false (the constraint was
resolved), introduce ConstraintResult to better model what
happened. NFC for now, but the intent here is to report unresolved
constraints through this mechanism.
Also, add a third [serializable] state for functions whose bodies we
*can* serialize, but only do so if they're referenced from another
serialized function.
This will be used for bodies synthesized for imported definitions,
such as init(rawValue:), etc, and various thunks, but for now this
change is NFC.
Use -sil-partial-specialization-with-generic-substitutions to enable the partial specialization even in cases of substitutions containing generic replacement types.
This improves the existing logic which is used to stop specialization for types that are too big to handle. It catches some pathological cases which hang the compiler.
Fixes rdar://30938882
Re-applying this commit, which was speculatively reverted. It turned out that that performance tests issues were unrelated.
This improves the existing logic which is used to stop specialization for types that are too big to handle. It catches some pathological cases which hang the compiler.
Fixes rdar://30938882
Partial specialization is disabled by default. Use -sil-partial-specialization to enable it.
Use -sil-partial-specialization-with-generic-substitutions to enable the partial specialization even in cases of substitutions containing generic replacement types.
Whenever we create a (root) requirement source, associate it with the
potential archetype on which the requirement is written. This lets us
follow a requirement source from the (stated or implied) requirement on
the root potential archetype to the effective requirement on the
resulting potential archetype.
Introduce FloatingRequirementSource for the cases where we need to
state what the root source is, but don't yet have a potential
archetype to attach it to. These get internally resolved to
RequirementSources as soon as possible.
Reimplement the RequirementSource class, which captures how
a particular requirement is satisfied by a generic signature. The
primary goal of this rework is to keep the complete path one follows
in a generic signature to get from some explicit requirement in the
generic signature to some derived requirement or type, e.g.,
1) Start at an explicit requirement "C: Collection"
2) Go to the inherited protocol Sequence,
3) Get the "Iterator" associated type
4) Get its conformance to "IteratorProtocol"
5) Get the "Element" associated type
We don't currently capture all of the information we want in the path,
but the basic structure is there, and should also allow us to capture
more source-location information, find the "optimal" path, etc. There are
are a number of potential uses:
* IRGen could eventually use this to dig out the witness tables and
type metadata it needs, instead of using its own fulfillment
strategy
* SubstitutionMap could use this to lookup conformances, rather than
it's egregious hacks
* The canonical generic signature builder could use this to lookup
conformances as needed, e.g., for the recursive-conformances case.
... and probably more simplifications, once we get this right.
This reverts commit 1b3d29a163, reversing
changes made to b32424953e.
We're seeing a handful of issues from turning on inlining of generics,
so I'm reverting to unblock the bots.
In addition to supporting the creation of full specializations, the EagerSpecializer changes contain some code for generating the layout-constrained partial specializations as well.
SubstitutionList is going to be a more compact representation of
a SubstitutionMap, suitable for inline allocation inside another
object.
For now, it's just a typedef for ArrayRef<Substitution>.