Running the SourceKit stress tester with verification of solver-based cursor info returned quite a few differences but in all of them, the old AST-based implementation was actually incorrect. So, instead of verifying the results, deliver the results from solver-baesd cursor info and only fall back to AST-based cursor info if the solver-based implementation returned no results.
rdar://103369449
This allows us to mark expected deviations between the AST-based and the solver-based implementation in the stress tester as XFails without breaking actual clients
We always verify if a cursor info request is issued through `sourcekitd-test`.
Use the std-equivalent names as the LLVM ones are now deprecated
(eventually `llvm::Optional` will disappear):
- `getValue` -> `value`
- `getValueOr` -> `value_or`
- `hasValue` -> `has_value`
Follow up from ab1b343dad and
7d8bf37e5e with some missing cases.
This new version takes the path to the compiler executable as a parameter, in order for libSwiftScan to compute compiler-relative portions of runtimeLibraryPaths, runtimeResourcePath. V1, without knowing the path to the compiler executable, produced incomplete sets of these paths.
Rather than set closure discriminators in both the parser (for explicit
closures) and then later as part of contextualizing closures (for
autoclosures), do so via a request that sets all of the discriminators
for a given context.
Instead of setting the parent pointer to null, set the `lastInitializedBitfieldID` to -1.
This allows to keep the parent block information, even when an instruction is removed from it's list.
In the Swift grammar, the top-level of a source file is a mix of three
different kinds of "items": declarations, statements, and expressions.
However, the existing parser forces all of these into declarations at
parse time, wrapping statements and expressions in TopLevelCodeDecls,
so the primary API for getting the top-level entities in source files
is based on getting declarations.
Start generalizing the representation by storing ASTNode instances at
the top level, rather than declaration pointers, updating many (but
not all!) uses of this API. The walk over declarations is a (cached)
filter to pick out all of the declarations. Existing parsed files are
unaffected (the parser still creates top-level code declarations), but
the new "macro expansion" source file kind skips creating top-level
code declarations so we get the pure parse tree. Additionally, some
generalized clients (like ASTScope lookup) will now look at the list
of items, so they'll be able to walk into statements and expressions
without the intervening TopLevelCodeDecl.
Over time, I'd like to phase out `getTopLevelDecls()` entirely,
relying on the new `getTopLevelItems()` for parsed content. We can
introduce TopLevelCodeDecls more lazily for semantic walks.
Rather than bodging the test to make it more robust, fix the functions
in the Threading layer to behave the same as they do on other platforms,
i.e. to guarantee that they always wait *at least* the amount of time
you asked for.
rdar://100236038
Windows' behaviour wrt `Sleep` family functions can be odd. Apparently,
if you specify a time lower than a system tick, they can return early.
This makes the test flaky when it shouldn't be. To fix it, we use the
Multimedia functions to adjust the system tick count as low as we can
get it.
rdar://100236038
We no longer intend to support the libSyntax AST, so let's drop
the tests that are only going to get in the way of us iterating
on the Swift Syntax tree.
Basic should not be allowed to link Parse, yet it was doing so
to allow Version to provide a constructor that would conveniently
parse a StringRef. This entrypoint also emitted diagnostics, so it
pulled in libAST.
Sink the version parser entrypoint down into Parse where it belongs
and point all the clients to the right place.
These will never appear in the source language, but can arise
after substitution when the original type is a tuple type with
a pack expansion type.
Two examples:
- original type: (Int, T...), substitution T := {}
- original type: (T...), substitution T := {Int}
We need to model these correctly to maintain invariants.
Callers that previously used to rely on TupleType::get()
returning a ParenType now explicitly check for the one-element
case instead.
This does not seem to serve a purpose other than corrupting arguments with whitespaces - they get merged into one large string where the whitespace boundary between arguments and whitespaces within arguments are blurred.
Part of rdar://98985453
This enables the ability to cancel requests, which aren’t code completion requests, again.
Previous crashes in SILGen are prevented by disabling cancellation during the SIL stages. Instead, we add dedicated cancellation checkpoints before and after SIL.
rdar://98390926