A few things:
1. Internally except for in the parser and the clang importer, we only represent
'sending'. This means that it will be easy to remove 'transferring' once enough
time has passed.
2. I included a warning that suggested to the user to change 'transferring' ->
'sending'.
3. I duplicated the parsing diagnostics for 'sending' so both will still get
different sets of diagnostics for parsing issues... but anywhere below parsing,
I have just changed 'transferring' to 'sending' since transferring isn't
represented at those lower levels.
4. Since SendingArgsAndResults is always enabled when TransferringArgsAndResults
is enabled (NOTE not vis-a-versa), we know that we can always parse sending. So
we import "transferring" as "sending". This means that even if one marks a
function with "transferring", the compiler will guard it behind a
SendingArgsAndResults -D flag and in the imported header print out sending.
rdar://128216574
We still only parse transferring... but this sets us up for adding the new
'sending' syntax by first validating that this internal change does not mess up
the current transferring impl since we want both to keep working for now.
rdar://128216574
Our standard conception of suppressible features assumes we should
always suppress the feature if the compiler doesn't support it.
This presumes that there's no harm in suppressing the feature, and
that's a fine assumption for features that are just adding information
or suppressing new diagnostics. Features that are semantically
relevant, maybe even ABI-breaking, are not a good fit for this,
and so instead of reprinting the decl with the feature suppressed,
we just have to hide the decl entirely. The missing middle here
is that it's sometimes useful to be able to adopt a type change
to an existing declaration, and we'd like older compilers to be
able to use the older version of the declaration. Making a type
change this way is, of course, only really acceptable for
@_alwaysEmitIntoClient declarations; but those represent quite a
few declarations that we'd like to be able to refine the types of.
Rather than trying to come up with heuristics based on
@_alwaysEmitIntoClient or other sources of information, this design
just requires the declaration to opt in with a new attribute,
@_allowFeatureSuppress. When a declaration opts in to suppression
for a conditionally-suppressible feature, the printer uses the
suppression serially-print-with-downgraded-options approach;
otherwise it uses the print-only-if-feature-is-available approach.
Instead it is a bit on ParamDecl and SILParameterInfo. I preserve the consuming
behavior by making it so that the type checker changes the ParamSpecifier to
ImplicitlyCopyableConsuming if we have a default param specifier and
transferring is set. NOTE: The user can never write ImplicitlyCopyableConsuming.
NOTE: I had to expand the amount of flags that can be stored in ParamDecl so I
stole bits from TypeRepr and added some logic for packing option bits into
TyRepr and DefaultValue.
rdar://121324715
The reason why I am doing this is that I am going to be changing transferring to
not be a true ParamSpecifier. Instead, it is going to be a bit on Param that
changes the default ParamSpecifier used. That being said, I cannot use consuming
for this purpose since consuming today implies no implicit copy semantics, which
we do not want unless the user specifically asks for it by writing consuming.
Use similar scheme as DeclAttribute.
* Create `BridgedTypeAttribute.createSimple()` and
`BridgedTypeAttributes.add()`, instead of
`BridgedTypeAttributes.addSimple()`
* Create `DeclAttributes::createSimple()` to align with `TypeAttribute`
Remove this bit from function decls and closures.
Instead, for closures, infer it from the presence
of a single return or single expression AST node
in the body, which ought to be equivalent, and
automatically takes result builders into
consideration. We can also completely drop this
query from AbstractFunctionDecl, replacing it
instead with a bit on ReturnStmt.
Rather than doing the transform in the parser, and
then potentially undoing it in Sema, move the
entire transform into Sema. This also lets us
unify the logic between function decls and
closures, and allows ASTGen to benefit from it.
The old TypeAttributes reprsentation wasn't too bad for a small number of
simple attributes. Unfortunately, the number of attributes has grown over
the years by quite a bit, which makes TypeAttributes fairly bulky even at
just a single SourceLoc per attribute. The bigger problem is that we want
to carry more information than that on some of these attributes, which is
all super ad hoc and awkward. And given that we want to do some things
for each attribute we see, like diagnosing unapplied attributes, the linear
data structure does require a fair amount of extra work.
I switched around the checking logic quite a bit in order to try to fit in
with the new representation better. The most significant change here is the
change to how we handle implicit noescape, where now we're passing the
escaping attribute's presence down in the context instead of resetting the
context anytime we see any attributes at all. This should be cleaner overall.
The source range changes around some of the @escaping checking is really a
sort of bugfix --- the existing code was really jumping from the @ sign
all the way past the autoclosure keyword in a way that I'm not sure always
works and is definitely a little unintentional-feeling.
I tried to make the parser logic more consistent around recognizing these
parameter specifiers; it seems better now, at least.
Generate all entries, and ensure we introduce a
PatternBindingInitializer context for non-local
cases. Also use this opportunity to cleanup
`PatternBindingDecl::create`.