This adds support for SE-0168, multi-line string literals.
Extend the lexer to recognize the new literals. Test cases added.
There are still areas for future diagnostic improvement, such as fixits and notes as to why a multi-line string literal will be malformed. Multi-line literals are explicitly forbidden inside of string interpolation, though this may be relaxed in the future.
The Swift 4 Migrator is invoked through either the driver and frontend
with the -update-code flag.
The basic pipeline in the frontend is:
- Perform some list of syntactic fixes (there are currently none).
- Perform N rounds of sema fix-its on the primary input file, currently
set to 7 based on prior migrator seasons. Right now, this is just set
to take any fix-it suggested by the compiler.
- Emit a replacement map file, a JSON file describing replacements to a
file that Xcode knows how to understand.
Currently, the Migrator maintains a history of migration states along
the way for debugging purposes.
- Add -emit-remap frontend option
This will indicate the EmitRemap frontend action.
- Don't fork to a separte swift-update binary.
This is going to be a mode of the compiler, invoked by the same flags.
- Add -disable-migrator-fixits option
Useful for debugging, this skips the phase in the Migrator that
automatically applies fix-its suggested by the compiler.
- Add -emit-migrated-file-path option
This is used for testing/debugging scenarios. This takes the final
migration state's output text and writes it to the file specified
by this option.
- Add -dump-migration-states-dir
This dumps all of the migration states encountered during a migration
run for a file to the given directory. For example, the compiler
fix-it migration pass dumps the input file, the output file, and the
remap file between the two.
State output has the following naming convention:
${Index}-${MigrationPassName}-${What}.${extension}, such as:
1-FixitMigrationState-Input.swift
rdar://problem/30926261
foo(_: 3) is equivalent to foo(3), so calling a function that has _ as
an argument label (func foo(`_`: 3)) still requires the _ to be
escaped. Before this patch, the compiler would suggest removing the `s,
even though that changes behaviour.
Fixes rdar://problem/31077797.
A lot of files transitively include Expr.h, because it was
included from SILInstruction.h, SILLocation.h and SILDeclRef.h.
However in reality most of these files don't do anything
with Exprs, especially not anything in IRGen or the SILOptimizer.
Now we're down to 171 files in the frontend which depend on
Expr.h, which is still a lot but much better than before.
Add an option to the lexer to go back and get a list of "full"
tokens, which include their leading and trailing trivia, which
we can index into from SourceLocs in the current AST.
This starts the Syntax sublibrary, which will support structured
editing APIs. Some skeleton support and basic implementations are
in place for types and generics in the grammar. Yes, it's slightly
redundant with what we have right now. lib/AST conflates syntax
and semantics in the same place(s); this is a first step in changing
that to separate the two concepts for clarity and also to get closer
to incremental parsing and type-checking. The goal is to eventually
extract all of the syntactic information from lib/AST and change that
to be more of a semantic/symbolic model.
Stub out a Semantics manager. This ought to eventually be used as a hub
for encapsulating lazily computed semantic information for syntax nodes.
For the time being, it can serve as a temporary place for mapping from
Syntax nodes to semantically full lib/AST nodes.
This is still in a molten state - don't get too close, wear appropriate
proximity suits, etc.
This biggest change is:
- LayoutConstraintInfo is now a FoldingSetNode, which allows for proper canonicalization of LayoutConstraints. This is important for the correctness of type comparisons if types contain layout constraints.
No functionality changes from the client's point of view.
Add diagnostics to fix decls with consecutive identifiers. This applies to
types, properties, variables, and enum cases. The diagnostic adds a camel-cased option if it is different than the first option.
https://bugs.swift.org/browse/SR-3599
The new `@_specialize` attribute has a syntax like this:
```swift
@_specialize(exported: true, kind: full, where K == Int, V == Int)
@_specialize(exported: false, kind: partial, where K: _Trivial64)
func dictFunction<K, V>(dict: Dictionary<K, V>) {
}
```
If `exported` is set, the corresponding specialization would have a public visibility and can be used by clients.
If `exported` is omitted, it's value is assumed to be `false`.
If `kind` is `full` it means a full specialization.
If `kind` is `partial` it means a partial specialization.
If `kind` is omitted, its value is assumed to be `full`.
Parsing declaration list (e.g. member list of nominal decl) is very
different from comma separated list, because it's elements are separated with
new-line or semi-colon. There's no good reason to consolidate them.
Also, declaration list in 'extension' or inside of decl '#if' didn't
emit diagnostics for consecutive declarations on a line.
class C {
#if true
var value: Int = 42 func foo() {}
#endif
}
extension C {
func bar() {} subscript(i: Int) -> Int {
return 24
}
}
This change consolidates declaration list parsing for
members of nominal decls, extensions, and inside of '#if'.
In addition, removed unnecessary property 'TrailingSemiLoc' from decl.
This reverts the contents of #5778 and replaces it with a far simpler
implementation of condition resolution along with canImport. When
combined with the optimizations in #6279 we get the best of both worlds
with a performance win and a simpler implementation.
This completely removes Parse’s ability to make any judgement calls
about compilation conditions, instead the parser-relevant parts of
‘evaluateConditionalCompilationExpr’ have been moved into
‘classifyConditionalCompilationExpr’ where they exist to make sure only
decls that we want to parse actually parse later.
The condition-evaluation parts have been moved into NameBinding in the
form of a Walker that evaluates and collapses IfConfigs. This walker
is meant as an homage to PlaygroundLogger. It should probably be
factored out into a common walker at some point in the future.
Implemented in the naive way by way of the current ASTContext’s
‘LoadedModules’. In theory this list should be in one-to-one
correspondence with the definition of “importable” as any module that
is required for compilation is loaded *before* we start parsing the
file. This means we don’t have to load the module, just check that
it’s in the set of loaded modules.
Note that this approach will most likely fall apart if submodules are
introduced and are lazily loaded. At that point this will need to be
refactored into a format that defers the checking of conditions
sometime before or during typechecking (after namebinding).
* Removed `parseConstructorArguments()`, unified with
`parseSingleParameterClause()`.
* Use `parseSingleParameterClause()` from `parseFunctionSignature()`, so
that we can share the recovery code.
* Removed `isFirstParameterClause` parameter from `mapParsedParameters`,
because it's predictable from `paramContext`.
Use a syntax that declares the layout's generic parameters and fields,
followed by the generic arguments to apply to the layout:
{ var Int, let String } // A concrete box layout with a mutable Int
// and immutable String field
<T, U> { var T, let U } <Int, String> // A generic box layout,
// applied to Int and String
// arguments