Several functionalities have been added to FSO over time and the logic has become
muddled.
We were always looking at a static image of the SIL and try to reason about what kind of
function signature related optimizations we can do.
This can easily lead to muddled logic. e.g. we need to consider 2 different function
signature optimizations together instead of independently.
Split 1 single function to do all sorts of different analyses in FSO into several
small transformations, each of which does a specific job. After every analysis, we produce
a new function and eventually we collapse all intermediate thunks to in a single thunk.
With this change, it will be easier to implement function signature optimization as now
we can do them independently now.
Minimal modifications to the test cases.
This made call sites confusing to read because it doesn't actually
check if the function already exists.
Also fix some minor formatting issues. This came up while I was working
on a fix for a bug that turned out to not be a bug.
Two fixes to optimization passes to maintain restrictions about what
[fragile] functions can reference:
- When devirtualizing witness methods, don't devirtualize if the caller
is fragile and the callee is not. This matches existing logic in
class devirtualization.
- When performing generic or function signature specialization, don't
specialize non-fragile functions referenced from fragile functions.
Since @_transparent functions are allowed to call 'static inline'
imported functions, also be sure to mark the foreign-to-native thunk
for such a function as [fragile].
With this patch, the standard library and performance test suite
now build with -enable-resilience.
No new tests for this stuff here -- the existing tests together
with an -enable-resilience build provide coverage.
Closes out <https://bugs.swift.org/browse/SR-267> and
<https://bugs.swift.org/browse/SR-268>.
Change the optimizer to only make specializations [fragile] if both the
original callee is [fragile] *and* the caller is [fragile].
Otherwise, the specialized callee might be [fragile] even if it is never
called from a [fragile] function, which inhibits the optimizer from
devirtualizing calls inside the specialization.
This opens up some missed optimization opportunities in the performance
inliner and devirtualization, which currently reject fragile->non-fragile
references:
TEST | OLD_MIN | NEW_MIN | DELTA (%) | SPEEDUP
--- | --- | --- | --- | ---
DictionaryRemoveOfObjects | 38391 | 35859 | -6.6% | **1.07x**
Hanoi | 5853 | 5288 | -9.7% | **1.11x**
Phonebook | 18287 | 14988 | -18.0% | **1.22x**
SetExclusiveOr_OfObjects | 20001 | 15906 | -20.5% | **1.26x**
SetUnion_OfObjects | 16490 | 12370 | -25.0% | **1.33x**
Right now, passes other than performance inlining and devirtualization
of class methods are not checking invariants on [fragile] functions
at all, which was incorrect; as part of the work on building the
standard library with -enable-resilience, I added these checks, which
regressed performance with resilience disabled. This patch makes up for
these regressions.
Furthermore, once SIL type lowering is aware of resilience, this will
allow the stack promotion pass to make further optimizations after
specializing [fragile] callees.
When resilience is enabled, some functions in the standard library that
are marked @effects(readonly) now have indirect results.
The SILCombiner pass doesn't handle @effects(readonly) with @out results
correctly, so just disable the optimizations temporarily to avoid a
mis-compile when resilience is enabled.
The LLVM readonly attribute can never be applied to such functions, so
don't set it either.
Should not have an effect when resilience is disabled.
A transparent function might be deserialized and inlined into a function
in another module, which would cause problems if the function referenced
local functions.
Previously we would force local functions to have public linkage instead,
which worked, but was not resilient if the body of the transparent
function changed in the module that contained it.
Add a library evolution test ensuring that such a change is resilient
now.
Part of https://bugs.swift.org/browse/SR-267.
This was mistakenly reverted in an attempt to fix buildbots.
Unfortunately it's now smashed into one commit.
---
Introduce @_specialize(<type list>) internal attribute.
This attribute can be attached to generic functions. The attribute's
arguments must be a list of concrete types to be substituted in the
function's generic signature. Any number of specializations may be
associated with a generic function.
This attribute provides a hint to the compiler. At -O, the compiler
will generate the specified specializations and emit calls to the
specialized code in the original generic function guarded by type
checks.
The current attribute is designed to be an internal tool for
performance experimentation. It does not affect the language or
API. This work may be extended in the future to add user-visible
attributes that do provide API guarantees and/or direct dispatch to
specialized code.
This attribute works on any generic function: a freestanding function
with generic type parameters, a nongeneric method declared in a
generic class, a generic method in a nongeneric class or a generic
method in a generic class. A function's generic signature is a
concatenation of the generic context and the function's own generic
type parameters.
e.g.
struct S<T> {
var x: T
@_specialize(Int, Float)
mutating func exchangeSecond<U>(u: U, _ t: T) -> (U, T) {
x = t
return (u, x)
}
}
// Substitutes: <T, U> with <Int, Float> producing:
// S<Int>::exchangeSecond<Float>(u: Float, t: Int) -> (Float, Int)
---
[SILOptimizer] Introduce an eager-specializer pass.
This pass finds generic functions with @_specialized attributes and
generates specialized code for the attribute's concrete types. It
inserts type checks and guarded dispatch at the beginning of the
generic function for each specialization. Since we don't currently
expose this attribute as API and don't specialize vtables and witness
tables yet, the only way to reach the specialized code is by calling
the generic function which performs the guarded dispatch.
In the future, we can build on this work in several ways:
- cross module dispatch directly to specialized code
- dynamic dispatch directly to specialized code
- automated specialization based on less specific hints
- partial specialization
- and so on...
I reorganized and refactored the optimizer's generic utilities to
support direct function specialization as opposed to apply
specialization.
This split the function signature module pass into 2 functin passes.
By doing so, this allows us to rewrite to using the FSO-optimized
function prior to attempting inlining, but allow us to do a substantial
amount of optimization on the current function before attempting to do
FSO on that function.
And also helps us to move to a model which module pass is NOT used unless
necesary.
I do not see regression nor improvement for on the performance test suite.
functionsignopts.sil and functionsignopt_sroa.sil are modified because the
mangler now takes into account of information in the projection tree.
Temporarily reverting @_specialize because stdlib unit tests are
failing on an internal branch during deserialization.
This reverts commit e2c43cfe14, reversing
changes made to 9078011f93.
This change follows up on an idea from Michael (thanks!).
It enables debugging and profiling on SIL level, which is useful for compiler debugging.
There is a new frontend option -gsil which lets the compiler write a SIL file and generated debug info for it.
For details see docs/DebuggingTheCompiler.rst and the comments in SILDebugInfoGenerator.cpp.
Introduce a new SILPrintContext class which is the main handle passed to the SILModule's and SILFunction's print functions.
It also allows to let derived classes implement call backs on instruction printing.
NFC for now, but needed for the upcoming SIL-debuginfo change.
Fix a crash in emitBuiltinCall() which occurs because we drop function
linkage information when creating SILCoverageMaps.
This re-applies 45c7e4e86 with the MachO-specific checks in the test
case removed.
This attribute can be attached to generic functions. The attribute's
arguments must be a list of concrete types to be substituted in the
function's generic signature. Any number of specializations may be
associated with a generic function.
This attribute provides a hint to the compiler. At -O, the compiler
will generate the specified specializations and emit calls to the
specialized code in the original generic function guarded by type
checks.
The current attribute is designed to be an internal tool for
performance experimentation. It does not affect the language or
API. This work may be extended in the future to add user-visible
attributes that do provide API guarantees and/or direct dispatch to
specialized code.
This attribute works on any generic function: a freestanding function
with generic type parameters, a nongeneric method declared in a
generic class, a generic method in a nongeneric class or a generic
method in a generic class. A function's generic signature is a
concatenation of the generic context and the function's own generic
type parameters.
e.g.
struct S<T> {
var x: T
@_specialize(Int, Float)
mutating func exchangeSecond<U>(u: U, _ t: T) -> (U, T) {
x = t
return (u, x)
}
}
// Substitutes: <T, U> with <Int, Float> producing:
// S<Int>::exchangeSecond<Float>(u: Float, t: Int) -> (Float, Int)
Introduce abstraction patterns for curried C-functions-as-methods for type lowering, and plumb the "foreign self parameter index" through call emission so that we emit the "self" parameter in the right position. This gets us handling C functions imported as methods with explicit swift_name attributes in simple, fully-applied cases. There's still more work to be done for properties, partial applications, and initializers introduced by extensions.
This is only used in the verifier, to ensure that default witness
thunks are suffiently visible.
Also this patch removes the asserts enforcing that only resilient
protocols have a default witness table. This will change in an
upcoming patch, and in this patch is necessary for the test to work.
Don't hardcode linkage of default witness thunks, addressing a FIXME.
This will allow us to emit default witness thunks for requirements of
internal protocols, too.
Migrate the check for whether a given type is representable in
Objective-C, which is currently used to verify when @objc can be
inferred or verify that an explicitly-written @objc is well-formed,
from Sema into a set of queries on the Type within the AST library, so
it can be used in other parts of the compiler.
As part of this refactoring, clean up and improve a number of aspects
of this code:
* Unify the "trivially representable" and "representable" code paths
into a single code path that covers these cases. Clarify the
different levels of "representable" we have in both the code and
in comments.
* Distinguish between representation in C vs. representation in
Objective-C. While we aren't using this now, I'm anticipating it
being useful to allow exporting C interfaces via @_cdecl (or
similar).
* Eliminate the special cases for bridging String/Array/Dictionary/Set
with their Foundation counterparts; we now consult
_ObjectiveCBridgeable conformances exclusively to get this
information.
* Cache foreign-representation information on the ASTContext in a
manner that will let us more easily get the right answer across
different contexts while providing more sharing than the TypeChecker
version.
Annoyingly, this only seemed to fix a small class of error where we
were permitting Unsafe(Mutable)Pointer<T> to be representable in
Objective-C when T was representable but not trivially representable,
e.g., T=String or T=AnyObject.Type.
a separate analysis pass.
This pass is run on every function and the optimized signature is return'ed through the
getArgDescList and getResultDescList.
Next step is to split to cloning and callsite rewriting into their own function passes.
rdar://24730896
"
Split up parsing of typealias and associatedtype, including dropping a
now unneeded ParseDeclOptions flag.
Then made typealias in a protocol valid, and act like you would
hope for protocol conformance purposes (i.e. as an alias possibly
involved in the types of other func/var conformances, not as a hidden
generic param in itself).
Also added support for simple type aliases in generic constraints. Aliases
to simple (non-sugared) archetype types (and also - trivially - aliases to
concrete types) can now be part of same-type constraints.
The strategy here is to add type aliases to the tree of
PotentialArchetypes, and if they are an alias to an archetype, also to
immediately find the real associated type and set it as the
representative for the PA. Thus the typealias PA node becomes just a
shortcut farther down into the tree for purposes of lookup and
generating same type requirements.
Then the typealias PA nodes need to be explicitly skipped when walking
the tree for building archetype types and other types of requirements,
in order to keep from getting extra out-of-order archetypes/witness
markers of the real associated type inserted where the typealias is
defined.
Any constraint with a typealias more complex than pointing to a single
nested associated type (e.g. `typealias T = A.B.C.D`), will now get a
specialized diagnoses.
In many places, we're interested in whether a type with archetypes *might be* a superclass of another type with the right bindings, particularly in the optimizer. Provide a separate Type::isBindableToSuperclassOf method that performs this check. Use it in the devirtualizer to fix rdar://problem/24993618. Using it might unblock other places where the optimizer is conservative, but we can fix those separately.