There are now separate functions for function addition and deletion instead of InvalidationKind::Function.
Also, there is a new function for witness/vtable invalidations.
rdar://problem/29311657
This pipeline is run as part of IRGen and has access to the IRGenModule.
Passes that run as part of this pipeline can query for the IRGenModule.
We will use it for the AllocStackHoisting pass. It wants to know if a type is of
non-fixed size.
To break the cyclic dependency between IRGen -> SILOptimizer -> IRGen that would
arise from the SILPassManager having to know about the createIRGENPASS()
function IRGen passes instead of exposing this function dynamically have to add
themselves to the pass manager.
We also either remove or make private the addPass* functions on SILPassManager,
so the only way to execute passes via SILPassManager is by creating a
SILPassPipelinePlan. This beyond adding uniformity ensures that we always
resetAndRemoveTransformations properly after a pipeline is run.
This commit adds the functionality, but does not change SILPassManager to use
it. The reason why I am doing this is so I can implement sil-opt pass bisecting
functionality in python using a tool that dumps the current pass pipelines
out. This will ensure that even in the face of changes to the pass pipelines,
everything should just work.
This re-instates commit de9622654d
The problem of the infinite loop should be fixed by the previous fix in FunctionSignatureOpts.
In addition this new commit implements a safety check to void such cases, even if buggy optimizations try to keep pushing new functions onto the work list.
Instead the pipeline is continued on the old function. This happens when a pass pushes a new, e.g. specialized function, on the function stack.
There is no need to repeat passes which already did run on a function.
It saves a little of compile time and I didn't see any significant impact on code size or performance.
It also simplifies the pass manager.
Add an invalidateAnalysisForDeadFunction API. This API calls the invalidateAnalysis
by default unless overriden by analysis pass themselves. This API passes the extra
information that this function is dead and going to be removed from the module.
CallerAnalysis overrides this API and only invalidate caller/callee relations but
does not push this into the recompute list.
We also considered the possibility of keeping a computed list, instead of recompute
list but that would introduce a O(n^2) complexity as every time we try to complete
the computed list, we need to walk over all the functions that currently exist in the
module to make sure the computed list is complete.
I feel eventually we can do a handleDeleteNotification for function deletion and we
wont need the API added in this change.
Address the comments from 0acc0a8464
I still have not made up my mind how to handle deleted functions.
CallerAnalysis is not hooked up to anything yet.
The analysis can tell all the callsites which calls a function in the module.
The analysis is computed and kept up-to-date lazily.
At the core of it, it keeps a list of functions that need to be recomputed for
the Caller/Callee relation to be precise and on every query, the analysis makes
sure to recompute them and clear the list before any query.
This is NFC right now. I am going to wire it up to function signature analysis
eventually.
Allow function passes to:
1. Add new functions, to be optimized before continuing with the current
function.
2. Restart the pipeline on the current function after the current pass
completes.
This makes it possible to fully optimize callees that are the result of
specialization prior to generating interprocedural information or making
inlining choices about these callees.
It also allows us to solve a phase-ordering issue we have with generic
specialization, devirtualization, and inlining, by rescheduling the
current function after changes happen in one of these passes as opposed
to running all of these as part of the inlining pass as happens today.
Currently this is NFC since we have no passes that use this
functionality.
Add interfaces and update the pass execution logic to allow function
passes to create new functions, or ask for functions to be optimized
prior to continuing.
Doing so results in the pass pipeline halting execution on the current
function, and continuing with newly added functions, returning to the
previous function after the newly added functions are fully optimized.
Make it a std::vector that reserves enough space based on the number of
functions in the initial bottom-up ordering.
This is the first step in making it possible for function passes to
notify the pass manager of new functions to process.
Make it a bit more clear that we're alternating between collecting (and
then running) function passes, and running module passes. Removes some
duplication that was present.
Reapplies 9d4d3c8 with fixes for bisecting pass execution.
(Headers first)
It has been generally agreed that we need to do this reorg, and now
seems like the perfect time. Some major pass reorganization is in the
works.
This does not have to be the final word on the matter. The consensus
among those working on the code is that it's much better than what we
had and a better starting point for future bike shedding.
Note that the previous organization was designed to allow separate
analysis and optimization libraries. It turns out this is an
artificial distinction and not an important goal.