This just moves a bunch of queries that used information on SILFunction to
determine this property to just call a helper on SILFunctionType itself.
Centralized logic is good.
rdar://29791263
If the nested type itself has generic constraints, we would
hit an assertion in requirement inference. Refactor some code
so that we can make the assertion more accurate.
Fixes <rdar://problem/30353095>.
There is already precedence for doing this via DominanceInfo. The reason I am
doing this is that I need the ownership verifier to be able to be run in Raw SIL
before no return folding has run. This means I need to be able to ignore
unreachable code resulting from SILGen not inserting unreachables after no
return functions.
The reason why SILGen does this is to preserve the source information of the
unreachable code so that we can emit nice errors about unreachable code.
rdar://29791263
This caused a crasher when running the ownership verifier. I don't have a test
case right now, since it happened several weeks ago.
The bug can not happen again since I eliminated the nullptr default argument.
rdar://29791263
Previously, these were only diagnosed in some situations, but the
compiler is becoming more flexible about when things get fed into
different places, and so can crop up elsewhere.
The correct/canonical ConcreteType and ConcreteTypeSource are both
stored in the Representative, but previously only the getter for the
former was tranversing the chain.
This biggest change is:
- LayoutConstraintInfo is now a FoldingSetNode, which allows for proper canonicalization of LayoutConstraints. This is important for the correctness of type comparisons if types contain layout constraints.
No functionality changes from the client's point of view.
New generic environments should be created directly from the generic
signature, without having to explicitly create an archetype
builder. Now, only the canonical archetype builders are ever used to
create a generic environment.
Clean up the representation of PotentialArchetype in a few small ways:
* Eliminate the GenericTypeParamType* at the root, and instead just
store a GenericParamKey. That makes the potential archetypes
independent of a particular set of generic parameters.
* Give potential archetypes a link back to their owning
ArchetypeBuilder, so we can get contextual information (etc.) when
needed. We can remove the "builder" arguments as a separate step.
Also, collapse getName()/getDebugName()/getFullName() into
getNestedName() and getDebugName(). Generic parameters don't have
"names" per se, so they should only show up in debug dumps.
In support of the former, clean up some of the diagnostics emitted by
the archetype builder that were using 'Identifier' or 'StringRef'
where they should have been using a 'Type' (i.e., the type behind the
dependent archetype).
For this we are linking the new re-mangler instead of the old one into the swift runtime library.
Also we are linking the new de-mangling into the swift runtime library.
It also switches to the new mangling for class names of generic swift classes in the metadata.
Note that for non-generic class we still have to use the old mangling, because the ObjC runtime in the OS depends on it (it de-mangles the class names).
But names of generic classes are not handled by the ObjC runtime anyway, so there should be no problem to change the mangling for those.
The reason for this change is that it avoids linking the old re-mangler into the runtime library.