This replaces my egregious -initWithCoder:-specific hack with a more
reasonable general solution.
Replace my initWithCoder: hack with a proper
Swift SVN r20562
This allows us to express required initializers in the API notes. Use
it to smooth over NSString differences in the various SDKs even more.
Swift SVN r20511
To do this, we keep track of decls with superfluous typedefs (rather than
just the typedefs), and check for that. Tag decls without typedefs are
printed with the tag.
<rdar://problem/17569385>
Swift SVN r20221
We do this so that the swiftmodule file contains all info necessary to
reconstruct the AST for debugging purposes. If the swiftmodule file is copied
into a dSYM bundle, it can (in theory) be used to debug a built app months
later. The header is processed with -frewrite-includes so that it includes
any non-modular content; the user will not have to recreate their project
structure and header maps to reload the AST.
There is some extra complexity here: a target with a bridging header
(such as a unit test target) may depend on another target with a bridging
header (such as an app target). This is a rare case, but one we'd like to
still keep working. However, if both bridging headers import some common.h,
we have a problem, because -frewrite-includes will lose the once-ness
of #import. Therefore, we /also/ store the path, size, and mtime of a
bridging header in the swiftmodule, and prefer to use a regular parse from
the original file if it can be located and hasn't been changed.
<rdar://problem/17688408>
Swift SVN r20128
We're not using this for anything, yet, so there aren't any checked-in
tests. Also note that I'm using ".apinotesc" for the binary form of
API notes.
Swift SVN r20096
CGFloat is 32-bit on 32-bit architectures and 64-bit on 64-bit
architectures for historical reasons. Rather than having it alias
either Float (32-bit) or Double (64-bit), introduce a distinct struct
type for CGFloat. CGFloat provides a complete set of comparisons and
arithmetic operators (including tgmath functions), initializers allows
explicit conversion between it an Int, UInt, Float, and Double, as
well as conforming to all of the protocols that Float/Double do.
This formulation of CGFloat makes use of CGFloat
architecture-independent, although it still requires a number of casts.
Fixes <rdar://problem/17224725>
Swift SVN r19689
No validation is done yet on whether the user-specified access control makes
sense in context, but all ValueDecls should at least /have/ accessibility now.
/Still/ no tests yet. They will be much easier to write once we're actually
enforcing access control and/or printing access control.
Swift SVN r19143
Add the ability to store optionality of the ObjC method parameters and return
type in a sidecar. This hardcoded info is then used to import Objective C
object pointer types as either optional or none, instead of implicitly
unwrapped optionals.
The feature is enabled with -import-with-tighter-objc-types=true.
Swift SVN r19048
.../if/ the protocol and the class are from the same top-level Clang module.
If not, the protocol is /not/ renamed, and users will have to disambiguate
with module qualification.
This kills our hardcoded "RenamedProtocols" list; it turns out this pattern
is more common than we thought /and/ leads to cross-referencing issues.
<rdar://problem/16206627>
Swift SVN r18809
instead of importing them as _Nil (which will be going away when nil becomes an expr).
You now get an error saying:
error: 'NULL' is unavailable: use 'nil' instead of this imported macro
This is pretty cool all around, except for the GCD macros that need to be fixed, I'll
handle that as a follow-up.
Swift SVN r18747
Use this for -class and +class, to make them less ad hoc. More to follow.
As part of this, actually mark imported unavailable declarations in a
protocol as "optional", because nobody should have to implement an
unavailable declaration.
Swift SVN r18262
attributes and create implicit conversions for them.
Also, when generating Clang modules for import, set the
appropriate macro to make CoreFoundation actually apply
those attributes to its typedefs.
Also, give shared linkage to imported class method
definitions.
The net effect is that CFString now automatically
converts to NSString and vice-versa.
Depends on Clang r208756 in order to preserve attributes
applied to tag types in multiple typedef declarations.
Swift SVN r18069
Attribute validation is not naturally idempotent, and we shouldn’t need to make it so. Rather, we should only do the validation once. This fixes an immediate issue with @NSManaged in multi-file situations (<rdar://problem/16879162>) and avoids some redundant work.
Longer term, we have a ton of redundant visitation that needs to be addressed <rdar://problem/16905199>.
Swift SVN r18039
Previously, the getter and setter for a property could disagree on what the
"type of the property" was: Unmanaged<CFType> vs. CFType, or COpaquePointer
vs. CMutableVoidPointer. Now, we treat property accessors as distinct from
normal methods when importing their parameter and result types, and have
those types follow the same rules as they would for the property itself.
This will need a bit of cleanup work once we're importing implicit properties
everywhere, but this handles the crashes and unfortunate limitations we were
seeing for WWDC.
<rdar://problem/16544938>
Swift SVN r17987
corresponding getter method is audited.
There are a host of other potential consistency problems
here, but this should fix a particular egregious one
that was preventing use of NSColor's CGColor property.
rdar://16846555
Swift SVN r17667
- the type of a const global variable
- the type of a parameter, always
- the return type of a function that has been audited
or has an explicit retained/not-retained attribute
- the return type of an ObjC method that has an explicit
retain/not-retained/inner-pointer attribute
Additionally, choose the correct conventions for all
these cases during SIL type lowering.
All this importing logic is still only enabled under
-Xfrontend -import-cf-types.
Swift SVN r17543
Previously, we were just using the base name, which resulted in massive
inefficiency when dealing with Clang (we basically had to check every
selector in the system to see if it had the same first selector piece).
I've hacked ConstraintSystem a bit to carry a map from UnresolvedDotExpr
to the ApplyExpr that consumes it, so that we can use the full DeclName
and look up methods by full selector.
Now that dynamic lookup is fast, re-enable it for the
Foundation_bridge.swift test. (r17520 actually provided most of the benefit.)
This does break selector lookup on AnyObject when doing selector splitting,
and slightly regresses diagnostics when you try to call a method on AnyObject
and forget a parameter name.
<rdar://problem/16808651>. Part of the Playground performance efforts.
Swift SVN r17524
This improves the -import-objc-header option to read decls from the header
as well. Any declaration that is not from a module will be considered to be
part of the "header module". Conversely, forward-declarations appearing in
the header will be resolved by looking through all modules responsible for
importing a header.
More of <rdar://problem/16702101>
Swift SVN r17492
THIS IS NOT READY FOR USE YET.
The new plan for mixed-source non-framework targets is that the Swift
compiler will import an Objective-C header directly, and treat the decls
and imports in that header as explicitly visible to the entire target.
This means users don't have to modularize their headers before bringing
them into Swift.
This commit adds the option and introduces the "imported headers" module
as an implicit import for the source files being compiled. It also directs
the Clang importer to process the given header (using #import, so that it
won't somehow get included twice) and watches for any module imports that
occur as a result of reading that header.
Still to come: import of decls within the header (not within any module),
and proper serialization of cross-references to the header and its imports.
Part of <rdar://problem/16702101>
Swift SVN r17218
We're going to need the parser again later, and we probably shouldn't be
hoping Clang's -fsyntax-only mode lines up with what we need to do anyway.
Swift SVN r17124
and only later adjust the type for the manner in which
it is actually being used.
This gives us a foundation on which to build a consistent
and defensible model for importing typedefs.
Also fix a subtle problem with typedefs imported from
multiple clang modules.
Swift SVN r17079
When an Objective-C class method follows the naming convention of a
factory method, i.e., its starting words match the ending words of the
class name, import it as a convenience initializer when it also:
- Returns instancetype (i.e., dynamic Self in Swift parlance)
- Has no NSError** parameters, which indicate the potential for failures
This is under a new flag (-enable-objc-factory-method-constructors)
because it is not generally functional. However, this is a step toward
<rdar://problem/16509024>.
Swift SVN r16479