This gives big code size wins for unused types and also for types, which are never used in a generic context.
Also it reduces the amount of symbols in the symbol table.
The size wins heavily depend on the project. I have seen binary size reductions from 0 to 20% on real world projects.
rdar://problem/30119960
This is NFC in intent, but I had to restructure the code to emit more
of the lists "inline", which means I inevitably altered some IRGen
emission patterns in ways that are visible to tests:
- GenClass emits property/ivar/whatever descriptors in a somewhat
different order.
- An ext method type list is now emitted as just an array, not a struct
containing only that array.
- Protocol descriptors are no longer emitted as packed structs.
I was sorely tempted to stop using packed structs for all the metadata
emission, but didn't really want to update that many tests in one go.
It's the same thing as for alloc_ref: the optional [tail_elems ...] attribute specify the tail elements to allocate.
For details see docs/SIL.rst
This feature is needed so that we can allocate a MangedBuffer with alloc_ref_dynamic.
The ManagedBuffer.create() function uses the dynamic self type to create the buffer instance.
The new instructions are: ref_tail_addr, tail_addr and a new attribute [ tail_elems ] for alloc_ref.
For details see docs/SIL.rst
As these new instructions are not generated so far, this is a NFC.
The new instructions are: ref_tail_addr, tail_addr and a new attribute [ tail_elems ] for alloc_ref.
For details see docs/SIL.rst
As these new instructions are not generated so far, this is a NFC.
initialization in-place on demand. Initialize parent metadata
references correctly on struct and enum metadata.
Also includes several minor improvements related to relative
pointers that I was using before deciding to simply switch the
parent reference to an absolute reference to get better access
patterns.
Includes a fix since the earlier commit to make enum metadata
writable if they have an unfilled payload size. This didn't show
up on Darwin because "constant" is currently unenforced there in
global data containing relocations.
This patch requires an associated LLDB change which is being
submitted in parallel.
initialization in-place on demand. Initialize parent metadata
references correctly on struct and enum metadata.
Also includes several minor improvements related to relative
pointers that I was using before deciding to simply switch the
parent reference to an absolute reference to get better access
patterns.
This means: handling of alloc_ref [stack].
It can be configured with two new options. See Option/FrontendOptions.td.
As the [stack] attribute is not generated yet, there should be NFC.
Swift SVN r32929
dealloc_ref [destructor] is the existing behavior. It expects the
reference count to have reached zero and the isDeallocating bit to
be set.
The new [constructor] variant first drops the initial strong
reference.
This allows DI to properly free uninitialized instances in
constructors. Previously this would fail with an assertion if the
runtime was built with debugging enabled.
Progress on <rdar://problem/21991742>.
Swift SVN r31142
SILFunctionType of the method instead of its formal type.
Gives more accurate information to the @encoding, makes
foreign error conventions work implicitly, and allows
IRGen's Swift-to-Clang to avoid duplicating arbitrary
amounts of the bridging logic from SILGen.
Some finagling was required in order to avoid calling
getConstantFunctionType from within other kinds of
lowering, which might have re-entered a generic context.
Also required fixing a bug with the type lowering of
optional DynamicSelfTypes where we would end up with
a substituted type in the lowered type.
Also, for some reason, our @encoding for -dealloc
methods was pretending that there was a formal parameter.
There didn't seem to be any justification for this,
and it's not like Clang does that. Fixed.
This commit reapplies r29266 with a conservative build fix
that disables ObjC property descriptors for @objc properties
that lack a getter. That should only be possible in SIL
files, because @objc should force accessors to be synthesized.
Arguably, Sema shouldn't be marking things implicitly @objc
in SIL files, but I'll leave that decision open for now.
Swift SVN r29272
SILFunctionType of the method instead of its formal type.
Gives more accurate information to the @encoding, makes
foreign error conventions work implicitly, and allows
IRGen's Swift-to-Clang to avoid duplicating arbitrary
amounts of the bridging logic from SILGen.
Some finagling was required in order to avoid calling
getConstantFunctionType from within other kinds of
lowering, which might have re-entered a generic context.
Also required fixing a bug with the type lowering of
optional DynamicSelfTypes where we would end up with
a substituted type in the lowered type.
Also, for some reason, our @encoding for -dealloc
methods was pretending that there was a formal parameter.
There didn't seem to be any justification for this,
and it's not like Clang does that. Fixed.
Swift SVN r29266
They don't need storage because they're empty, so we don't emit their offsets, but we still emitted references to their offset variable. Fix this by lowering ref_element_addr to an undef for empty fields.
Swift SVN r23317
Instead of hacking together inaccurate metadata only for object-typed properties, make an effort to produce accurate metadata for all types of properties, and accurately capture the "copy", "dynamic", and "weak" semantics of some properties. This is necessary for Core Data to accurately synthesize property accessors for non-object properties; currently it will generate bogus object accessors over properties with non-object type. <rdar://problem/17373368>
This isn't fully accurate, since Clang hides property type encoding behind a 'getObjCEncodingForPropertyDecl' that only accepts an ObjCPropertyDecl. With some refactoring, it should be possible to expose this.
Swift SVN r19567
If we officially register our classes with the ObjC runtime, we can't get away with generic class instances sharing a runtime name or a metaclass anymore, so pack the metaclass and rodata templates into the generic metadata template and add codegen to the fill function to wire up the references at instantiation time. Since we don't have a runtime mangler yet, create a stupid unique name for classes by tacking on the pointer value.
Swift SVN r17882
We can't know whether a mixed-heritage class has a non-pointer isa, so use object_getClass to get its isa pointer. Fixes <rdar://problem/16656489>.
Swift SVN r16549
Replace HeapTypeInfo::hasSwiftRefcount with a "getSwiftRefcounting" method, returning an enum indicating whether a heap object has native/ObjC/block/unknown refcounting semantics. Use _Block_copy and _Block_release for block refcounting.
Swift SVN r16041
Note that this lowering currently assumes that the static type of the class is its dynamic type. This should be a flag on the dealloc_ref instruction, not an assumption.
Swift SVN r12144
Greg indicated that objc_getProtocol only works if somebody actually reifies a protocol_t record for the protocol with the runtime, so we need to emit our own protocol_t for every Protocol* value we do a checked cast with. Hijack the ClassDataBuilder to also build protocol_t records.
Swift SVN r9420
In particular, when a nongeneric class inherits a fragile generic class, we need to populate the field offsets for the instantiated base class because we can't rely on the runtime to populate it for us.
Swift SVN r9258
When allocating and deallocating dependent generic class instances, load the instance size and alignment from the metadata instead of trying to use a static size from the compile-time class layout.
Swift SVN r9250
We need these for dependent-layout generic classes so we know the allocation/deallocation size and alignment. When I figure out ObjC interop with generic subclasses these should move to the rodata so they get handled resiliently by the ObjC runtime, but for generic class bringup this is convenient.
Swift SVN r9249
MemberRefExpr now uses ConcreteDeclRef to refer to its member, which
includes the substitutions and obviates the need for
GenericMemberRefExpr.
Swift SVN r7842
If an archetype has a superclass bound, we can assume the superclass's
retain semantics for the type. We can also use the superclass's storage pointer type to cut down on some bitcast IR noise when calling superclass methods on the archetype value.
Swift SVN r5642