AnyFunctionRef is a universal function reference that can wrap all AST nodes
that represent functions and exposes a common interface to them. Use it in two
places in SIL where CapturingExpr was used previously.
AnyFunctionRef allows further simplifications in other places, but these will
be done separately.
Swift SVN r8239
If a struct has [unowned] fields and an implicit elementwise constructor, then the constructor receives a strong reference argument corresponding to the unowned field, and we have to introduce that conversion as part of the construction.
Swift SVN r8207
If an OpaqueValueExpr is only used in one place, mark it as such. SIL
generation will then elide the retain/release pair associated with
each reference to the opaque value, instead consuming the value at the
point of use.
Swift SVN r8072
Introduce a proper cleanup for the Optional<T> value created by
non-forced dynamic member lookups.
Additionally, properly manage each reference to an OpaqueValue within
an expression, and release the value when the RAII object goes out of
scope. This is the conservative approach to be optimized soon.
Swift SVN r8071
The dynamic_method_br instruction branches depending on whether a
particular object can accept a given message, as determined at
runtime. If the object can accept the message, it branches to the
first basic block, providing the uncurried method as the BB
argument. If the object cannot accept the message, it branches to the
second basic block. Either way, the result is packaged up into an
optional type and passed along to the continuation block, which
provides the optional result.
Note that this instruction is restricted to lookup of Objective-C
methods.
Documentation and IR generation (via -respondsToSelector) to
follow. Review greatly appreciated!
Swift SVN r8065
move the corresponding functionality into SILGen.
I've switched around 'assign' so that it's no longer a
semantic assignment --- that is, so that it expects a properly
lowered value as its operand, not an r-value of the semantic
type. This actually simplifies quite a lot of code and removes
some ugly special-casing from MemoryPromotion.
Swift SVN r7942
I've decided to keep only the location of the scope AST node that corresponds to the cleanup. (Currently, there is no user that needs the originator expression, which caused the cleanup. So keeping things simple.)
Added the cleanup location to the Scope and JumpDest classes, which gets assigned on construction of those. The Scope's and JumpDest locations are used when we emit the cleanup instructions.
We now give better location info for 2 existing tests for definitive initialization.
(+ Rather sparse testing of all this.)
Swift SVN r7764
We mark the branch instructions leading into single epilog code with ReturnLocation/ImplicitReturnLocation. If SIL Gen simplifies the code and merges the code representing the return into the epilog block, the terminator of the epilog block (the ReturnInst) will have the return location info on it. Otherwise, the ReturnInst has the RegularLocation, which represents the enclosing FunctionExpr or Constructor/Destructor Decls.
(I've discussed dropping the optimization from SILGen, and keeping the epilog code canonical, with Adrian; but he said that there might not be any wins in doing so, so keeping it for now.)
Added AutoGeneratedLocation to represent segments of code generated by SILGen. This will be used for thunks and other auto-generated segments.
Swift SVN r7634
This was not likely an error-free change. Where you see problems
please correct them. This went through a fairly tedious audit
before committing, but comments might have been changed incorrectly,
not changed at all, etc.
Swift SVN r7631
Generate union constructors as SIL functions using the new 'union' instruction. Change UnionTypeInfo::emitInjectionFunctionBody into UnionTypeInfo::emitInjection, which emits the union value to an explosion rather than emitting the scalar return directly, and use it to implement IRGen lowering of the 'union' instruction.
This breaks a few serialization tests because of mangler bugs handling generic unions, which I'll fix next.
Swift SVN r7559
This is a baby step toward eliminating GenericParamList from
PolymorphicFunctionType, fixing up the easy callers. No functionality
change.
Swift SVN r7370
Previously, TypeAliasDecl was used for typealiases, generic
parameters, and assocaited types, which is hideous and the source of
much confusion. Factor the latter two out into their own decl nodes,
with a common abstract base for "type parameters", and push these
nodes throughout the frontend.
No real functionality change, but this is a step toward uniquing
polymorphic types, among other things.
Swift SVN r7345