Use Substitution::subst() to replace the opened existential with
the concrete type. I don't have a test case, but I think the old
code would have failed if a non-Self substitution also contained
the opened existential, which could happen after generic inlining.
Also, it looks like the guard against devirtualizing methods returning
Self is no longer necessary, because the devirtualizer can insert the
necessary casts. In any case, the check was incorrect because we now
allow calling methods on existentials that return Self as part of
another type in covariant position, such as Optional<Self> or
`() -> Self`.
SubstitutionList is going to be a more compact representation of
a SubstitutionMap, suitable for inline allocation inside another
object.
For now, it's just a typedef for ArrayRef<Substitution>.
A new SubstitutionMap::getProtocolSubstitutions() method handles
the case where we construct a trivial SubstitutionMap to replace
the protocol Self type with a concrete type.
When substituting one opened existential archetype for another,
use the form of Type::subst() that takes two callbacks instead of
building a SubstitutionMap. SubstitutionMaps are intended to be
used with keys that either come from a GenericSignature or a
GenericEnvironment, so using them to replace opened archetypes
doesn't fit the conceptual model we're going for.
Separate formal lowered types from SIL types.
The SIL type of an argument will depend on the SIL module's conventions.
The module conventions are determined by the SIL stage and LangOpts.
Almost NFC, but specialized manglings are broken incidentally as a result of
fixes to the way passes handle book-keeping of aruments. The mangler is fixed in
the subsequent commit.
Otherwise, NFC is intended, but quite possible do to rewriting the logic in many
places.
This is dead code and can be re-added if it is needed. Right now though there
really isnt a ValueOwnershipKind that corresponds to deallocating and I do not
want to add a new ValueOwnershipKind for dead code.
Not sure why but this was another "toxic utility method".
Most of the usages fell into one of three categories:
- The base value was always non-null, so we could just call
getCanonicalType() instead, making intent more explicit
- The result was being compared for equality, so we could
skip canonicalization and call isEqual() instead, removing
some boilerplate
- Utterly insane code that made no sense
There were only a couple of legitimate uses, and even there
open-coding the conditional null check made the code clearer.
Also while I'm at it, make the SIL open archetypes tracker
more typesafe by passing around ArchetypeType * instead of
Type and CanType.
This simplifies the SILType substitution APIs and brings them in line with Doug and Slava's refactorings to improve AST-level type substitution. NFC intended.
Before this commit all code relating to handling arguments in SILBasicBlock had
somewhere in the name BB. This is redundant given that the class's name is
already SILBasicBlock. This commit drops those names.
Some examples:
getBBArg() => getArgument()
BBArgList => ArgumentList
bbarg_begin() => args_begin()
Type substitution works on a fairly narrow set of types: generic type
parameters (to, e.g., use a generic) and archetypes (to map out of a
generic context). Historically, it was also used with
DependentMemberTypes, but recent refactoring to eliminate witness
markers eliminate that code path.
Therefore, narrow TypeSubstitutionMap's keys to SubstitutableType,
which covers archetypes and generic type parameters. NFC
Today, loads and stores are treated as having @unowned(unsafe) ownership
semantics. This leaves the user to specify ownership changes on the loaded or
stored value independently of the load/store by inserting ARC operations. With
the change to Semantic SIL, this will no longer be true. Instead loads, stores
have ownership semantics that one must reason about such as copy, take, and
trivial.
This change moves us closer to that world by eliminating the default
OwnershipQualification argument from create{Load,Store}. This means that the
compiler developer cannot ignore reasoning about the ownership semantics of the
memory operation that they are creating.
Operationally, this is a NFC change since I have just gone through the compiler
and updated all places where we create loads, stores to pass in the former
default argument ({Load,Store}OwnershipQualifier::Unqualified), to
SILBuilder::create{Load,Store}(...). For now, one can just do that in situations
where one needs to create loads/stores, but over time, I am going to tighten the
semantics up via the verifier.
rdar://28685236
- Do not try to make a lookup type of a witness_method more concrete if it not an opened existential.
- Replace witness_method instruction by a new one with a more concrete type only in the specific apply instruction instead of doing it everywhere. This allows for more optimization opportunities if the same witness_method is used by multiple apply instructions.
- We were bailing out if the partial_apply's substitutions
contained archetypes, but there was no inherent reason
to do this. After fixing an issue with opened existential
tracking, this started to work.
- We were also bailing out if the callee was not a static
function_ref. Again, there's no reason to do this, because
we also emit partial_apply to form closures from
class_method and witness_method calls.
- There was a bug in the code for extending lifetimes of
@in parameters. Even if a parameter was an input parameter
to the method and not an alloc_stack, we have to copy
it into a new alloc_stack, because there might be
multiple invocations of an apply for a single partial_apply.
- There was also a bug where we would proceed to apply the
peephole to @unowned_inner_pointer functions, which is wrong.
IRGen's lowering of partial_apply has special handling there
and the resulting function type has an @owned result.
If a SILBuilder creates a new instruction based on an old instruction and a new instruction is supposed to use some opened archetypes, one needs to set a proper opened archetypes context in the builder based on the opened archetypes used by the old instruction.
This fixes rdar://28024272
Simplify e.g., ASTContext::getBridgedToObjC(), which no longer needs
the optional return.
Eliminate the now-unused constraint kind for checking bridging to
Objective-C.
This establishes a real def-use relation from the self-parameter to any instruction which uses the dynamic-self type.
This is an addition to what was already done for opened archetypes.
The biggest part of this commit is to rename "OpenedArchetypeOperands" to "TypeDependentOperands" as this name is now more appropriate.
Other than that the change includes:
*) type-dependent operands are now printed after a SIL instruction in a comment as "type-defs:" (for debugging)
*) FuncationSignatureOpts doesn't need to explicitly check if a function doesn't bind dynamic self to remove a dead self metadata argument
*) the check if a function binds dynamic self (used in the inliner) is much simpler now
*) also collect type-dependent operands for ApplyInstBase::SubstCalleeType and not only in the substitution list
*) with this SILInstruction::mayHaveOpenedArchetypeOperands (used in CSE) is not needed anymore and removed
*) add type dependent operands to dynamic_method instruction
Regarding the generated code it should be a NFC.
Till now there was no way in SIL to explicitly express a dependency of an instruction on any opened archetypes used by it. This was a cause of many errors and correctness issues. In many cases the code was moved around without taking into account these dependencies, which resulted in breaking the invariant that any uses of an opened archetype should be dominated by the definition of this archetype.
This patch does the following:
- Map opened archetypes to the instructions defining them, i.e. to open_existential instructions.
- Introduce a helper class SILOpenedArchetypesTracker for creating and maintaining such mappings.
- Introduce a helper class SILOpenedArchetypesState for providing a read-only API for looking up available opened archetypes.
- Each SIL instruction which uses an opened archetype as a type gets an additional opened archetype operand representing a dependency of the instruction on this archetype. These opened archetypes operands are an in-memory representation. They are not serialized. Instead, they are re-constructed when reading binary or textual SIL files.
- SILVerifier was extended to conduct more thorough checks related to the usage of opened archetypes.
Till now there was no way in SIL to explicitly express a dependency of an instruction on any opened archetypes used by it. This was a cause of many errors and correctness issues. In many cases the code was moved around without taking into account these dependencies, which resulted in breaking the invariant that any uses of an opened archetype should be dominated by the definition of this archetype.
This patch does the following:
- Map opened archetypes to the instructions defining them, i.e. to open_existential instructions.
- Introduce a helper class SILOpenedArchetypesTracker for creating and maintaining such mappings.
- Introduce a helper class SILOpenedArchetypesState for providing a read-only API for looking up available opened archetypes.
- Each SIL instruction which uses an opened archetype as a type gets an additional opened archetype operand representing a dependency of the instruction on this archetype. These opened archetypes operands are an in-memory representation. They are not serialized. Instead, they are re-constructed when reading binary or textual SIL files.
- SILVerifier was extended to conduct more thorough checks related to the usage of opened archetypes.
Till now there was no way in SIL to explicitly express a dependency of an instruction on any opened archetypes used by it. This was a cause of many errors and correctness issues. In many cases the code was moved around without taking into account these dependencies, which resulted in breaking the invariant that any uses of an opened archetype should be dominated by the definition of this archetype.
This patch does the following:
- Map opened archetypes to the instructions defining them, i.e. to open_existential instructions.
- Introduce a helper class SILOpenedArchetypesTracker for creating and maintaining such mappings.
- Introduce a helper class SILOpenedArchetypesState for providing a read-only API for looking up available opened archetypes.
- Each SIL instruction which uses an opened archetype as a type gets an additional opened archetype operand representing a dependency of the instruction on this archetype. These opened archetypes operands are an in-memory representation. They are not serialized. Instead, they are re-constructed when reading binary or textual SIL files.
- SILVerifier was extended to conduct more thorough checks related to the usage of opened archetypes.
When resilience is enabled, some functions in the standard library that
are marked @effects(readonly) now have indirect results.
The SILCombiner pass doesn't handle @effects(readonly) with @out results
correctly, so just disable the optimizations temporarily to avoid a
mis-compile when resilience is enabled.
The LLVM readonly attribute can never be applied to such functions, so
don't set it either.
Should not have an effect when resilience is disabled.
Reinstates commit 0c2ca94ef7
With two bug fixes:
*) use after free asan crash
*) wrong check in ValueLifetimeAnalysis::isWithinLifetime
And some refactoring
The opened archetype already has metatypes stripped off.
The problem was in code that tried to propagate the type from open_existentials
in static existential calls.
%0 = metatype thick ClientSocket.Type
%1 = init_existential_metatype %0 : thick ClientSocket.Type, thick Socket.Type
%2 = open_existential_metatype %1 : thick Socket.Type to thick (@opened(...) Socket).Type
%3 = witness_method opened(...) Socket, #Socket.newWithConfig!1, %2
try_apply %3<@opened(...) Socket>(%2)
We would read the type of '%2' which is a metatype of '@open(...)' in the
substitution replacement code comparing it to the subsitution which is just
'@open(...)'. We already computed the archetype earlier so just use that
instead.
SR-811
rdar://24825970
We were giving special handling to ApplyInst when we were attempting to use
getMemoryBehavior(). This commit changes the special handling to work on all
full apply sites instead of just AI. Additionally, we look through partial
applies and thin to thick functions.
I also added a dumper called BasicInstructionPropertyDumper that just dumps the
results of SILInstruction::get{Memory,Releasing}Behavior() for all instructions
in order to verify this behavior.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.