Allows converting a raw slice into a zero-based raw buffer,
which is a common operation on flat memory.
Add and update UnsafeRawBufferPointer unit tests.
* Add sliceability tests for Unsafe(Raw)BufferPointer.
Improve the generic sliceability tests to verify that SubSequence indices are
compatible with their parents indices.
* Fix and enable testing stdlib Collection instances.
Top-level entry points fully testing a collection instance:
check${Traversal}Collection
One level of recursion into all slices of the collection instance
O(n^2). (Not combinatorial).
Previously, checkCollection() did nothing. So much of the testing infrastructure was inactive. Now it runs all forward collection tests.
Fixes a bug in subscriptRangeTests.
The UnsafeRawBufferPointer and Data collection testing is disabled and
will be fixed in the following commit.
* Give UnsafeRawBufferPointer a distinct slice type.
SubSequence = RandomAccessSlice<Self>
* Fix raw buffer pointer tests after changing the API
* Add UnsafeRawBuffer(rebasing:) initializers.
Allows converting a raw slice into a zero-based raw buffer,
which is a common operation on flat memory.
Add and update UnsafeRawBufferPointer unit tests.
* Do not run recursive O(n^2) collection slice testing on large collections.
Now, even with collection unit testing wired up, the validation tests
take the same amount of time to execute.
* Add init(rebasing:) to UnsafeBufferPointer.
This is required for consistency with UnsafeRawBufferPointer.
* Update CHANGELOG.md for SE-0138 amendment: UnsafeRawBufferPointer slice type.
Mandatory inlining of a few very frequently used functions caused the
SIL size explosion, which in turn made the inliner use up to 6Gb of
memory to compile the standard library. @inline(__always) helps avoid
that without affecting benchmark results.
Related to: <rdar://problem/31375011>
array.append_element(newElement: Element)
array.append_contentsOf(contentsOf newElements: S)
And allow early inlining of them.
Those functions will be needed to optimize Array.append(contentsOf)
Some cases of using isSuperset can cause crashes, this was caused by improper subclassing callouts; this pr resolves those failures (and provides unit tests for that case)
The cases where the bridge was traversed too much now only causes a single bridge out call (without needing to reallocate or thrash retain/release)
String.components(separatedBy: CharacterSet) should be considerably faster now not only for more apporpriate bridging calls but also no longer needing to bridge arrays back and forth.
Resolves the following issues:
rdar://problem/17281998
rdar://problem/26611771
rdar://problem/29738989
Not sure why the earlier version even compiled; the `Iterator.Element` types need to match up for most of these operations, and the `Iterator` types themselves need to match for some.
I think the complexity of these condition extensions is unneeded, and may be vestigial from a time when the compiler was less cooperative. Test this theory using CI
Eliminate all of the redundant conformance constraints in the standard
library that were identified by the newly-introduced warning for
redundant, explicitly-specified conformances.
Calling drop(while: ) after prefix() on a pure Sequence loses the
prefix, because in the internal drop(while: ) override grabs the
underlying base iterator from _PrefixSequence and wraps it in a
_DropWhileSequence.
Previously often times when casting a value, we would just pass along the
cleanup of the uncasted value. With semantic SIL this is no longer correct since
the cleanup now needs to be on the cast result.
This caused problems for certain usages of Builtin.castToNativeObject(...) by
the stdlib. Specifically, the stdlib was using this on AnyObject values that
were not necessarily native. Since we were recreating the cleanup on the native
value, a swift native release was being used =><=.
In this commit I solve this problem by:
1. Adding an assert in Builtin.castToNativeObject(...) that ensures that any value
passed to Builtin.castToNativeObject() is known conservatively to use swift
native reference counting.
2. I changed all uses where we do not have a precondition of a native ref
counting type to use Builtin.castToUnknownObject(...).
3. I added a new Builtin called Builtin.unsafeCastToNativeObject(...) that does
not have the compile time check. I used this to rewrite callsites in the stdlib
where we know via preconditions that an AnyObject will dynamically always be
native.
rdar://29791263