Previously, these were all using MetadataCache. MetadataCache is a
more heavyweight structure which acquires a lock before building the
metadata. This is appropriate if building the metadata is very
expensive or might have semantic side-effects which cannot be rolled
back. It's also useful when there's a risk of re-entrance, since it
can diagnose such things instead of simply dead-locking or infinitely
recursing. However, it's necessary for structural cases like tuple
and function types, and instead we can just use ConcurrentMap, which
does a compare-and-swap to publish the constructed metadata and
potentially destroys it if another thread successfully won the race.
This is an optimization which we could not previously attempt.
As part of this, fix tuple metadata uniquing to consider the label
string correctly. This exposes a bug where the runtime demangling
of tuple metadata nodes doesn't preserve labels; fix this as well.
Rather than having Sema provide a default implementation of
Error._code when needed, introduce a runtime function to extract the
default code, so that we can provide a default implementation via a
protocol extension in the standard library.
When getting a mirror child that is a class existential, there
may be witness tables for the protocol composition to copy. Don't
just take the address of a class instance pointer from the stack -
make a temporary existential-like before calling into the Mirror
constructor.
This now correctly covers reflecting weak optional class types, and weak
optional class existential types, along with fixing a stack buffer
overflow reported by the Address Sanitizer (thanks, ASan!).
Tests were also updated to check for the validity of the child's data.
rdar://problem/27348445
Heap boxes don't have a "class" metadata kind, so make
sure to release them when creating a new owner for loading
weak references in the runtime mirrors.
rdar://problem/27348445
for weak semantics, that is!
94a9c512b9 made some changes to loading
weak references by adding some information in the lower bits with
respect to locking. These bits need to be masked out when performing a
load, such as when we want to get the metadata pointer for a class
instance. This normally works fine when going through the normal weak
loading functions in the runtime.
When the runtime function swift_ClassMirror_subscript gets the offset of
one of its stored properties, it immediately packages it into the the
ad-hoc existential container, known as just `Mirror` in the runtime.
However, the weak reference isn't aligned! It has bit 1 set. We weren't
loading the weak reference here as we would during normal SILGen, such
as with a weak_load instruction. Simulate that here and make the
reference strong before putting it into the Mirror container, which also
clears those lower bits.
rdar://problem/27475034
There are still a couple of other cases to handle, namely the
unowned(safe) and unowned(unsafe) reference kinds. There may be other
places where an unaligned pointer is problematic in the runtime, which
we should audit for correctness.
rdar://problem/27809991
This makes it a bit easier to diagnose unexpected boxing problems in the debugger, by allowing `po [value _swiftTypeName]` to work, instead of forcing users to know how to call `swift_getTypeName` from lldb themselves.
Previously AnyHashable would consider SwiftValue to be a subclass of
NSObject (which it is in practice) and return false when trying to
compare an AnyHashable of a SwiftValue box to an AnyHashable of the
unboxed value.
If a value error wrapped in a SwiftValue box conforms to Hashable, the box now
uses the Swift's conformance to Hashable.
Part of rdar://problem/27574348.
If the Swift error wrapped in a _SwiftNativeNSError box conforms to
Hashable, the box now uses the Swift's conformance to Hashable.
Part of rdar://problem/27574348.
This partially reverts commit
47f01ee98d. In other words, I'm bring
back the changes to the Swift runtime that should eliminate the data
race in swift_bridgeErrorToNSError, but leaving the actual test
disabled while we do more investigation.
SILGen already attempts to extract an embedded NSError when
type-erasing to an Error existential; make the runtime do the same
thing dynamically.
Huge thanks to Joe Groff who noticed that I missed this path.
Huge thanks to John for noting that 'consume' didn't provide the
guarantees we wanted, and to Michael G. for getting a TSan build up
and running to identify/verify this race.
It's possible that this is overlay strict, and that we only need to
look at the domain to ensure that the code and userInfo are
visible. However, TSan seems to prefix the form in this patch, so
we'll be more conservative for now.
Fixes rdar://problem/27541751.
Imported Cocoa error types are represented by structs wrapping an
NSError. The conversion from these structs to Error would end up
boxing the structs in _SwiftNativeNSError, losing identity and leading
to a wrapping loop.
Instead, extract the embedded NSError if there is one. In the Swift
runtime, do this as part of the dynamic cast to NSError, using a (new,
defaulted) requirement in the Error type so we can avoid an extra
runtime lookup of the protocol. In SILGEn, do this by looking for the
_BridgedStoredNSError protocol conformance when erasing to an Error
type. Fixes SR-1562 / rdar://problem/26370984.
All generic bridgeable types can bridge for all their instantiations now. Removing this ferrets out some now-unnecessary traps that check for unbridgeable parameter types.