An earlier patch fixed the case where some tuple elements
were lvalue types. However this only looked into tuples
nested one level deep, when a more correct fix checks the
lvalue recursive property of the type.
Implements part of SE-0110. Single argument in closures will not be accepted if
there exists explicit type with a number of arguments that's not 1.
```swift
let f: (Int, Int) -> Void = { x in } // this is now an error
```
Note there's a second part of SE-0110 which could be considered additive,
which says one must add an extra pair of parens to specify a single arugment
type that is a tuple:
```swift
let g ((Int, Int)) -> Void = { y in } // y should have type (Int, Int)
```
This patch does not implement that part.
We previously produced the error message:
rdar25271859.swift:14:11: error: value of tuple type '(Float, Int)' has no member '0'
a.map { $0.0 }
^~ ~
We now produce:
rdar25271859.swift:15:5: error: generic parameter 'U' could not be inferred
.andThen { dataResult in
^
which is at least is correct, if not yet helpful.
This flips the switch to have @noescape be the default semantics for
function types in argument positions, for everything except property
setters. Property setters are naturally escaping, so they keep their
escaping-by-default behavior.
Adds contentual printing, and updates the test cases.
There is some further (non-source-breaking) work to be done for
SE-0103:
- We need the withoutActuallyEscaping function
- Improve diagnostics and QoI to at least @noescape's standards
- Deprecate / drop @noescape, right now we allow it
- Update internal code completion printing to be contextual
- Add more tests to explore tricky corner cases
- Small regressions in fixits in attr/attr_availability.swift
and provide a fix-it to move it to the new location as referenced
in SE-0081.
Fix up a few stray places in the standard library that is still using
the old syntax.
Update any ./test files that aren't expecting the new warning/fix-it
in -verify mode.
While investigating what I thought was a new crash due to this new
diagnostic, I discovered two sources of quite a few compiler crashers
related to unterminated generic parameter lists, where the right
angle bracket source location was getting unconditionally set to
the current token, even though it wasn't actually a '>'.
- All parts of the compiler now use ‘P1 & P2’ syntax
- The demangler and AST printer wrap the composition in parens if it is
in a metatype lookup
- IRGen mangles compositions differently
- “protocol<>” is now “swift.Any”
- “protocol<_TP1P,_TP1Q>” is now “_TP1P&_TP1Q”
- Tests cases are updated and added to test the new syntax and mangling
This commit defines the ‘Any’ keyword, implements parsing for composing
types with an infix ‘&’, and provides a fixit to convert ‘protocol<>’
- Updated tests & stdlib for new composition syntax
- Provide errors when compositions used in inheritance.
Any is treated as a contextual keyword. The name ‘Any’
is used emit the empty composition type. We have to
stop user declaring top level types spelled ‘Any’ too.
There are a couple of features that are not yet implemented, because they require additions to the Builtin module. Specifically, this implementation does not have:
- formRemainder(dividingBy:)
- formSquareRoot()
- addProduct(_:,_:)
Also missing are the generic initializers and comparisons whose implementation depends on having new Integer protocols.
The last remaining feature of SE-0067 is that while the basic operators +,-,*,/, etc are moved onto the FloatingPoint protocol, they are still required on the concrete types in order to disambiguate overloads. Fixing this seems to require either modifying the overload resolution rules or removing these operators from some other protocols. Or it might just require that someone smarter than me looks at the problem.
Passes all the existing tests (with the included changes). I'm working on additional tests for the new features.
This crash was a bug in computeTupleShuffle handling conversions to
a parameter list with a varargs argument in the middle of the list.
In this case, it is coming from the parameter list for Swift.print.
When inferring a contextual type for the input expression to an assignment,
use getRValueType() to strip lvalues from tuple types in recursive positions,
this allows us to produce a sensible diagnostic of:
error: binary operator '%' cannot be applied to two 'T' operands
instead of:
error: cannot assign value of type 'T' to type '@lvalue _'
because we don't have a weird lvalue type in the way.
argument. For now we start with some of the most simple cases: single argument
calls. This dramatically improves the QoI for error messages in argument lists,
typically turning a error+note combo into a single specific error message.
Some minor improvements coming (and also generalizing this to n-ary calls), but it
is nice that all the infrastructure is starting to come together...
Swift SVN r30905
get the same wording, fixing <rdar://problem/21964599> Different diagnostics for the same issue
While I'm in the area, remove some dead code.
Swift SVN r30713
- Have DiagnosticEngine produce "aka" annotations for sugared types.
- Fix the "optional type '@lvalue C?' cannot be used as a boolean; test for '!= nil' instead"
diagnostic to stop printing @lvalue noise.
This addresses:
<rdar://problem/19036351> QoI: Print minimally-desugared 'aka' types like Clang does
Swift SVN r30587
Requiring a variadic parameter to come at the end of the parameter
list is an old restriction that makes no sense nowadays, and which we
had all thought we had already lifted. It made variadic parameters
unusable with trailing closures or defaulted arguments, and made our
new print() design unimplementable.
Remove this restriction, replacing it with a less onerous and slightly
less silly restriction that we not have more than one variadic
parameter in a given parameter clause. Fixes rdar://problem/20127197.
Swift SVN r30542
This is a travesty that makes it hard to reason about tuple vs. scalar
types. It's only use in our own code involved dealing with the
difference in element types between Set and Dictionary in
gyb-generated code. Ewww. Fixes rdar://problem/17963034.
Swift SVN r30074
If you want to make the parameter and argument label the same in
places where you don't get the argument label for free (i.e., the
first parameter of a function or a parameter of a subscript),
double-up the identifier:
func translate(dx dx: Int, dy: Int) { }
Make this a warning with Fix-Its to ease migration. Part of
rdar://problem/17218256.
Swift SVN r27715
The rule changes are as follows:
* All functions (introduced with the 'func' keyword) have argument
labels for arguments beyond the first, by default. Methods are no
longer special in this regard.
* The presence of a default argument no longer implies an argument
label.
The actual changes to the parser and printer are fairly simple; the
rest of the noise is updating the standard library, overlays, tests,
etc.
With the standard library, this change is intended to be API neutral:
I've added/removed #'s and _'s as appropriate to keep the user
interface the same. If we want to separately consider using argument
labels for more free functions now that the defaults in the language
have shifted, we can tackle that separately.
Fixes rdar://problem/17218256.
Swift SVN r27704
This post-hoc diagnostic replaces r24915, r25045, and r25054 by doing a
very basic check for representation incompatibility between two types.
More cases can be added as necessary.
rdar://problem/19600325, again.
Swift SVN r25117
This re-applies r24987, reverted in r24990, with a fix for a spuriously-
introduced error: don't use a favored constraint in a disjunction to avoid
applying a fix. (Why not? Because favoring bubbles up, i.e. the
/disjunction/ becomes favored even if the particular branch is eventually
rejected.) This doesn't seem to affect the outcome, though: the other
branch of the disjunction doesn't seem to be tried anyway.
Finishes rdar://problem/19600325
Swift SVN r25054
And even if we don't suggest wrapping in a closure (say, because there's
already a closure involved), emit a more relevant diagnostic anyway.
(Wordsmithing welcome.)
Wrapping a function value in a closure essentially explicitly inserts a
conversion thunk that we should eventually be able to implicitly insert;
that's rdar://problem/19517003.
Part of rdar://problem/19600325
Swift SVN r24987
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
rdar://problem/17198298
- Allow 'static' in protocol property and func requirements, but not 'class'.
- Allow 'static' methods in classes - they are 'class final'.
- Only allow 'class' methods in classes (or extensions of classes)
- Remove now unneeded diagnostics related to finding 'static' in previously banned places.
- Update relevant diagnostics to make the new rules clear.
Swift SVN r24260