Instead of inserting all alloc_stack/dealloc_stack instructions at the begin/end of the function, insert them at the actual lifetime boundaries.
rdar://problem/16723128
The change in LLVM r297045, which enables X86 copy elision from i64
arguments, affects the debug info output for the linetable.swift test.
For iOS simulator targets (but not macOS), the prologue_end .loc
directive has a non-zero line number, instead of having that line
number specified separately in a subsequent .loc directive.
Use the generic type lowering algorithm described in
"docs/CallingConvention.rst#physical-lowering" to map from IRGen's explosion
type to the type expected by the ABI.
Change IRGen to use the swift calling convention (swiftcc) for native swift
functions.
Use the 'swiftself' attribute on self parameters and for closures contexts.
Use the 'swifterror' parameter for swift error parameters.
Change functions in the runtime that are called as native swift functions to use
the swift calling convention.
rdar://19978563
Swift uses rt_swift_* functions to call the Swift runtime without using dyld's stubs. These functions are renamed to swift_rt_* to reduce namespace pollution.
rdar://28706212
This flips the switch to have @noescape be the default semantics for
function types in argument positions, for everything except property
setters. Property setters are naturally escaping, so they keep their
escaping-by-default behavior.
Adds contentual printing, and updates the test cases.
There is some further (non-source-breaking) work to be done for
SE-0103:
- We need the withoutActuallyEscaping function
- Improve diagnostics and QoI to at least @noescape's standards
- Deprecate / drop @noescape, right now we allow it
- Update internal code completion printing to be contextual
- Add more tests to explore tricky corner cases
- Small regressions in fixits in attr/attr_availability.swift
Now that boxes are typed and projectable, the address no longer has to be passed separately.
For now, this breaks capture promotion, DI, and debug info, which analyze uses of the address param. Will be addressed in upcoming commits:
Swift :: DebugInfo/byref-capture.swift
Swift :: DebugInfo/closure-args.swift
Swift :: DebugInfo/closure-args2.swift
Swift :: DebugInfo/inout.swift
Swift :: DebugInfo/linetable.swift
Swift :: SILPasses/capture_promotion.swift
Swift :: SILPasses/definite_init_diagnostics.swift
This commit adds a DebugVariable field that is shared by
- AllocBoxInst
- AllocStackInst
- DebugValueInst
- DebugValueAddrInst
Currently DebugVariable only holds the Swift argument number.
This allows us to retire several expensive heuristics in IRGen that
attempted to identify which local variables actually where arguments
and recover their relative order.
Memory footprint notes:
This commit adds a 4-byte field to 4 SILInstructin subclasses.
This was offset by 8ab1e2dd50
which removed 20 bytes from *every* SILInstruction.
Caveats:
This commit surfaces a known bug in FunctionSigantureOpts, tracked in
rdar://problem/23727705 — debug info for exploded function arguments
cannot be expressed until this is fixed.
This reapplies ed2b16dc5a with a bugfix for
generic function arrguments and an additional testcase.
<rdar://problem/21185379&22705926>
This commit adds a DebugVariable field that is shared by
- AllocBoxInst
- AllocStackInst
- DebugValueInst
- DebugValueAddrInst
Currently DebugVariable only holds the Swift argument number.
This allows us to retire several expensive heuristics in IRGen that
attempted to identify which local variables actually where arguments
and recover their relative order.
Memory footprint notes:
This commit adds a 4-byte field to 4 SILInstructin subclasses.
This was offset by 8ab1e2dd50
which removed 20 bytes from *every* SILInstruction.
Caveats:
This commit surfaces a known bug in FunctionSigantureOpts, tracked in
rdar://problem/23727705 — debug info for exploded function arguments
cannot be expressed until this is fixed.
<rdar://problem/21185379&22705926>
'Ss' appears in manglings tens of thousands of times in the standard library and is also incredibly frequent in other modules. This alone is enough to shrink the standard library by 59KB.
Swift SVN r32409
There's still work left to do. In terms of next steps, there's still rdar://problem/22126141, which covers removing the 'workaround' overloads for print (that prevent bogus overload resolution failures), as well as providing a decent diagnostic when users invoke print with 'appendNewline'.
Swift SVN r30976
The only caveat is that:
1. We do not properly recognize when we have a let binding and we
perform a guaranteed dynamic call. In such a case, we add an extra
retain, release pair around the call. In order to get that case I will
need to refactor some code in Callee. I want to make this change, but
not at the expense of getting the rest of this work in.
2. Some of the protocol witness thunks generated have unnecessary
retains or releases in a similar manner.
But this is a good first step.
I am going to send a large follow up email with all of the relevant results, so
I can let the bots chew on this a little bit.
rdar://19933044
Swift SVN r27241
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
I am starting to reuse manglings for different passes. I want to make sure that
when we reuse functions we actually get a function created by the same pass.
Swift SVN r23924
Now the SILLinkage for functions and global variables is according to the swift visibility (private, internal or public).
In addition, the fact whether a function or global variable is considered as fragile, is kept in a separate flag at SIL level.
Previously the linkage was used for this (e.g. no inlining of less visible functions to more visible functions). But it had no effect,
because everything was public anyway.
For now this isFragile-flag is set for public transparent functions and for everything if a module is compiled with -sil-serialize-all,
i.e. for the stdlib.
For details see <rdar://problem/18201785> Set SILLinkage correctly and better handling of fragile functions.
The benefits of this change are:
*) Enable to eliminate unused private and internal functions
*) It should be possible now to use private in the stdlib
*) The symbol linkage is as one would expect (previously almost all symbols were public).
More details:
Specializations from fragile functions (e.g. from the stdlib) now get linkonce_odr,default
linkage instead of linkonce_odr,hidden, i.e. they have public visibility.
The reason is: if such a function is called from another fragile function (in the same module),
then it has to be visible from a third module, in case the fragile caller is inlined but not
the specialized function.
I had to update lots of test files, because many CHECK-LABEL lines include the linkage, which has changed.
The -sil-serialize-all option is now handled at SILGen and not at the Serializer.
This means that test files in sil format which are compiled with -sil-serialize-all
must have the [fragile] attribute set for all functions and globals.
The -disable-access-control option doesn't help anymore if the accessed module is not compiled
with -sil-serialize-all, because the linker will complain about unresolved symbols.
A final note: I tried to consider all the implications of this change, but it's not a low-risk change.
If you have any comments, please let me know.
Swift SVN r22215
Mandatory-inlined (aka transparent functions) are still treated as if they
had the location and scope of the call site. <rdar://problem/14845844>
Support inline scopes once we have an optimizing SIL-based inliner
Patch by Adrian Prantl.
Swift SVN r18835