This is the lifetime ending variant of fix_lifetime. It is a lie to the
ownership verifier that a value is being consumed along a path. Its intention is
to be used to allow for the static verification of ownership in deallocating
deinits which for compatibility with objective-c have weird ownership behavior.
See the commit merged with this commit for more information.
Once we move to a copy-on-write implementation of existential value buffers we
can no longer consume or destroy values of an opened existential unless the
buffer is uniquely owned.
Therefore we need to track the allowed operation on opened values.
Add qualifiers "mutable_access" and "immutable_access" to open_existential_addr
instructions to indicate the allowed access to the opened value.
Once we move to a copy-on-write implementation, an "open_existential_addr
mutable_access" instruction will ensure unique ownership of the value buffer.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
For this we need to store the linkage of the “original” method implementation in the vtable.
Otherwise DeadFunctionElimination thinks that the method implementation is not public but private (which is the linkage of the thunk).
The big part of this change is to extend SILVTable to store the linkage (+ serialization, printing, etc.).
fixes rdar://problem/29841635
Use a syntax that declares the layout's generic parameters and fields,
followed by the generic arguments to apply to the layout:
{ var Int, let String } // A concrete box layout with a mutable Int
// and immutable String field
<T, U> { var T, let U } <Int, String> // A generic box layout,
// applied to Int and String
// arguments
This was obviously intended given that the driver enables the corresponding
compiler option by default, and most SIL tests explicitly call for it.
Enabling verification does not increase the run time of the swift-check target.
This ensures that we can write FileCheck patterns that match the end of sil
functions. Just using a FileCheck pattern against a brace is not sufficient in
the context of checking the SIL emitted by SILGen. This is because we could match a
different function's body and match the closing brace against the other
function's end brace.
With this change, one can be specific by checking:
// CHECK: } {{.*}} end sil function '<mangled name>'
The inspiration for this change is rdar://28685236. While updating SILGen tests
for that I have found many instances of SILGen tests pattern matching against
the wrong function bodies. This change will allow me to eliminate these problems
robustly.
rdar://29077869
Noticed this while preparing copy_value, destroy_value. The problem was that we
were not parsing the SIL Debug Location at the end of
mark_uninitialized_behavior.
It's the same thing as for alloc_ref: the optional [tail_elems ...] attribute specify the tail elements to allocate.
For details see docs/SIL.rst
This feature is needed so that we can allocate a MangedBuffer with alloc_ref_dynamic.
The ManagedBuffer.create() function uses the dynamic self type to create the buffer instance.
The new instructions are: ref_tail_addr, tail_addr and a new attribute [ tail_elems ] for alloc_ref.
For details see docs/SIL.rst
As these new instructions are not generated so far, this is a NFC.
The new instructions are: ref_tail_addr, tail_addr and a new attribute [ tail_elems ] for alloc_ref.
For details see docs/SIL.rst
As these new instructions are not generated so far, this is a NFC.
- All parts of the compiler now use ‘P1 & P2’ syntax
- The demangler and AST printer wrap the composition in parens if it is
in a metatype lookup
- IRGen mangles compositions differently
- “protocol<>” is now “swift.Any”
- “protocol<_TP1P,_TP1Q>” is now “_TP1P&_TP1Q”
- Tests cases are updated and added to test the new syntax and mangling
This failed after the following PR:
Add an isStrict flag to SIL pointer_to_address. #3529
(not sure why the failure didn't appear locally or with swift-ci).
Strict aliasing only applies to memory operations that use strict
addresses. The optimizer needs to be aware of this flag. Uses of raw
addresses should not have their address substituted with a strict
address.
Also add Builtin.LoadRaw which will be used by raw pointer loads.
This instruction creates a "virtual" address to represent a property with a behavior that supports definite initialization. The instruction holds references to functions that perform the initialization and 'set' logic for the property. It will be DI's job to rewrite assignments into this virtual address into calls to the initializer or setter based on the initialization state of the property at the time of assignment.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
And use the new project_existential_box to get to the address value.
SILGen now generates a project_existential_box for each alloc_existential_box.
And IRGen re-uses the address value from the alloc_existential_box if the operand of project_existential_box is an alloc_existential_box.
This lets the generated code be the same as before.
And use project_box to get to the address value.
SILGen now generates a project_box for each alloc_box.
And IRGen re-uses the address value from the alloc_box if the operand of project_box is an alloc_box.
This lets the generated code be the same as before.
Other than that most changes of this (quite large) commit are straightforward.
If a global variable in a module we are compiling has a type containing
a resilient value type from a different module, we don't know the size
at compile time, so we cannot allocate storage for the global statically.
Instead, we will use a buffer, just like alloc_stack does for archetypes
and resilient value types.
This adds a new SIL instruction but does not yet make use of it.
Having a separate address and container value returned from alloc_stack is not really needed in SIL.
Even if they differ we have both addresses available during IRGen, because a dealloc_stack is always dominated by the corresponding alloc_stack in the same function.
Although this commit quite large, most changes are trivial. The largest non-trivial change is in IRGenSIL.
This commit is a NFC regarding the generated code. Even the generated SIL is the same (except removed #0, #1 and @local_storage).
This changes UUID::toString() to always print using upper case. The previous
behavior was platform specific, resulting in difficulty checking UUIDs in tests.
Serialization/basic_sil.swift and SIL/Parser/basic.sil are now expected to pass
on Linux. This resolves bug SR-417.
Modeling nonescaping captures as @inout parameters is wrong, because captures are allowed to share state, unlike 'inout' parameters, which are allowed to assume to some degree that there are no aliases during the parameter's scope. To model this, introduce a new @inout_aliasable parameter convention to indicate an indirect parameter that can be written to, not only by the current function, but by well-typed, well-synchronized aliasing accesses too. (This is unrelated to our discussions of adding a "type-unsafe-aliasable" annotation to pointer_to_address to allow for safe pointer punning.)