At some point, pass definitions were heavily macro-ized. Pass
descriptive names were added in two places. This is not only redundant
but a source of confusion. You could waste a lot of time grepping for
the wrong string. I removed all the getName() overrides which, at
around 90 passes, was a fairly significant amount of code bloat.
Any pass that we want to be able to invoke by name from a tool
(sil-opt) or pipeline plan *should* have unique type name, enum value,
commend-line string, and name string. I removed a comment about the
various inliner passes that contradicted that.
Side note: We should be consistent with the policy that a pass is
identified by its type. We have a couple passes, LICM and CSE, which
currently violate that convention.
Also, add a third [serializable] state for functions whose bodies we
*can* serialize, but only do so if they're referenced from another
serialized function.
This will be used for bodies synthesized for imported definitions,
such as init(rawValue:), etc, and various thunks, but for now this
change is NFC.
It turned out that a significant part of a swiftmodule’s size is contributed by function declarations and types used by them. Therefore it is important to avoid emitting any functions or function declarations that are not needed by the module.
This change introduces the following changes:
- Function declarations should be serialized only if they are referenced by something that is serialized.
- Function bodies of functions with external linkage should never be serialized.
The only exception are shared_external functions. THis is a workaround, which will be removed in the future (see explanations in SILSerializer::writeSILFunction)
The result of the later change is that functions with external linkage are not put on the SIL serialization worklist and their bodies are not scanned, thus we do not detect references to the functions which are only referenced by functions with external linkage. In particular, the bodies of shared_external functions won’t be serialized at all if they are referenced only from functions with external linkage. And declarations of external functions referenced only from functions with external linkage won’t be serialized too.
With this changes SILSerializer emits significantly fewer function declarations.
Fixes rdar://30081040
This is the lifetime ending variant of fix_lifetime. It is a lie to the
ownership verifier that a value is being consumed along a path. Its intention is
to be used to allow for the static verification of ownership in deallocating
deinits which for compatibility with objective-c have weird ownership behavior.
See the commit merged with this commit for more information.
Introduce an algorithm to canonicalize and minimize same-type
constraints. The algorithm itself computes the equivalence classes
that would exist if all explicitly-provided same-type constraints are
ignored, and then forms a minimal, canonical set of explicit same-type
constraints to reform the actual equivalence class known to the type
checker. This should eliminate a number of problems we've seen with
inconsistently-chosen same-type constraints affecting
canonicalization.
[NFC] Add -enable-sil-opaque-values frontend option.
This will be used to change the SIL-level calling convention for opaque values,
such as generics and resilient structs, to pass-by-value. Under this flag,
opaque values have SSA lifetimes, managed by copy_value and destroy_value.
This will make it easier to optimize copies and verify ownership.
* [SILGen] type lowering support for opaque values.
Add OpaqueValueTypeLowering.
Under EnableSILOpaqueValues, lower address-only types as opaque values.
* [SIL] Fix ValueOwnershipKind to support opaque SIL values.
* Test case: SILGen opaque value support for Parameter/ResultConvention.
* [SILGen] opaque value support for function arguments.
* Future Test case: SILGen opaque value specialDest arguments.
* Future Test case: SILGen opaque values: emitOpenExistential.
* Test case: SIL parsing support for EnableSILOpaqueValues.
* SILGen opaque values: prepareArchetypeCallee.
* [SIL Verify] allow copy_value for EnableSILOpaqueValues.
* Test cast: SIL serializer support for opaque values.
* Add a static_assert for ParameterConvention layout.
* Test case: Mandatory SILOpt support for EnableSILOpaqueValues.
* Test case: SILOpt support for EnableSILOpaqueValues.
* SILGen opaque values: TypeLowering emitCopyValue.
* SILBuilder createLoad. Allow loading opaque values.
* SIL Verifier. Allow loading and storing opaque values.
* SILGen emitSemanticStore support for opaque values.
* Test case for SILGen emitSemanticStore.
* Test case for SIL mandatory support for inout assignment.
* Fix SILGen opaque values test case after rebasing.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
This is only enabled when semantic sil is enabled /and/ we are not parsing
unqualified SIL.
*NOTE* To properly write tests for this, I had to rework how we verified
Branch/CondBranch insts to be actually correct (instead of pseudo-correct). I
have to put this functionality together in order to write tests.
rdar://29791263
The reason why I am introducing special instructions is so I can maintain the
qualified ownership API wedge in between qualified SIL and the rest of the ARC
instructions that are pervasively used in the compiler.
These instructions in the future /could/ be extended to just take @sil_unmanaged
operands directly, but I want to maintain flexibility to take regular
non-trivial operands in the short term.
rdar://29791263
When enumerating requirements, always use the archetype anchors to
express requirements. Unlike "representatives", which are simply there
to maintain the union-find data structure used to track equivalence
classes of potential archetypes, archetype anchors are the
ABI-stable canonical types within a fully-formed generic signature.
The test case churn comes from two places. First, while
representatives are *often* the same as the archetype anchors, they
aren't *always* the same. Where they differ, we'll see a change in
both the printed generic signature and, therefore, it's
mangling.
Additionally, requirement inference now takes much greater
care to make sure that the first types in the requirement follow
archetype anchor ordering, so actual conformance requirements occur in
the requirement list at the archetype anchor---not at the first type
that is equivalent to the anchor---which permits the simplification in
IRGen's emission of polymorphic arguments.
This is dead code and can be re-added if it is needed. Right now though there
really isnt a ValueOwnershipKind that corresponds to deallocating and I do not
want to add a new ValueOwnershipKind for dead code.
This was in the first high level ARC instruction proposal, but I have not needed
it until now. The use case for this is to ahandle strong_retain_unowned (which
takes in an unowned value, asserts it is still alive, performs a strong_retain,
and returns the @owned value). This @owned value needs a destroy_value.
rdar://29671437
Keep in mind that these are approximations that will not impact correctness
since in all cases I ensured that the SIL will be the same after the
OwnershipModelEliminator has run. The cases that I was unsure of I commented
with SEMANTIC ARC TODO. Once we have the verifier any confusion that may have
occurred here will be dealt with.
rdar://28685236
This is a NFC change, since verification still will be behind the flag. But this
will allow me to move copy_value, destroy_value in front of the
EnableSILOwnership flag and verify via SILGen that we are always using those
instructions.
rdar://28851920
Now that the previous patches have shaken out implicit assumptions
about the order of generic requirements and substitutions, we can
make a more radical change, dropping redundant protocol requirements
when building the original generic signature.
This means that the canonical ordering and minimization that we
used to only perform when building the mangling signature is done
all of the time, and hence getCanonicalManglingSignature() can go
away.
Usages now either call getCanonicalSignature(), or operate on the
original signature directly.
What I've implemented here deviates from the current proposal text
in the following ways:
- I had to introduce a FunctionArrowPrecedence to capture the parsing
of -> in expression contexts.
- I found it convenient to continue to model the assignment property
explicitly.
- The comparison and casting operators have historically been
non-associative; I have chosen to preserve that, since I don't
think this proposal intended to change it.
- This uses the precedence group names and higherThan/lowerThan
as agreed in discussion.
The order of keys in a serialized hash map is deterministic (consistent
across runs of the same compiler and same input) but not specified
(not consistent across compiler versions or modified inputs). Tweak two
tests to avoid this issue: one by sorting the output, the other by
using CHECK-DAG to ignore ordering issues.
rdar://problem/25492781&25497592
Change the optimizer to only make specializations [fragile] if both the
original callee is [fragile] *and* the caller is [fragile].
Otherwise, the specialized callee might be [fragile] even if it is never
called from a [fragile] function, which inhibits the optimizer from
devirtualizing calls inside the specialization.
This opens up some missed optimization opportunities in the performance
inliner and devirtualization, which currently reject fragile->non-fragile
references:
TEST | OLD_MIN | NEW_MIN | DELTA (%) | SPEEDUP
--- | --- | --- | --- | ---
DictionaryRemoveOfObjects | 38391 | 35859 | -6.6% | **1.07x**
Hanoi | 5853 | 5288 | -9.7% | **1.11x**
Phonebook | 18287 | 14988 | -18.0% | **1.22x**
SetExclusiveOr_OfObjects | 20001 | 15906 | -20.5% | **1.26x**
SetUnion_OfObjects | 16490 | 12370 | -25.0% | **1.33x**
Right now, passes other than performance inlining and devirtualization
of class methods are not checking invariants on [fragile] functions
at all, which was incorrect; as part of the work on building the
standard library with -enable-resilience, I added these checks, which
regressed performance with resilience disabled. This patch makes up for
these regressions.
Furthermore, once SIL type lowering is aware of resilience, this will
allow the stack promotion pass to make further optimizations after
specializing [fragile] callees.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.