Change all the existing addressors to the unsafe variant.
Update the addressor mangling to include the variant.
The addressor and mutable-addressor may be any of the
variants, independent of the choice for the other.
SILGen and code synthesis for the new variants is still
untested.
Swift SVN r24387
rdar://problem/17198298
- Allow 'static' in protocol property and func requirements, but not 'class'.
- Allow 'static' methods in classes - they are 'class final'.
- Only allow 'class' methods in classes (or extensions of classes)
- Remove now unneeded diagnostics related to finding 'static' in previously banned places.
- Update relevant diagnostics to make the new rules clear.
Swift SVN r24260
Previously the "as" keyword could either represent coercion or or forced
downcasting. This change separates the two notions. "as" now only means
type conversion, while the new "as!" operator is used to perform forced
downcasting. If a program uses "as" where "as!" is called for, we emit a
diagnostic and fixit.
Internally, this change removes the UnresolvedCheckedCastExpr class, in
favor of directly instantiating CoerceExpr when parsing the "as"
operator, and ForcedCheckedCastExpr when parsing the "as!" operator.
Swift SVN r24253
Fixes rdar://problem/17229052
Make it clear C_ARGV var is unsafe.
Made it impossible to set the argc/unsafeArgv outside of the stdlib.
Refactored tests to not use C_ARG{C,V}.
Made C_ARG{C,V} unavailable.
Swift SVN r23249
emitting LoadExprs (unless they have a side effect that must be
emitted). This is good for -O0 code quality in general, but is important
to avoid materializing 'self' values in initializers that semantically
don't have to happen.
This is progress towards fixing:
<rdar://problem/17207456> Unable to access dynamicType of an object in a class initializer that isn't done
enabling the struct cases.
Swift SVN r22735
This simplifies the code generation path for existential methods by allowing it to shared more code with the generic case, (It'll be even simpler when Sema opens the existentials for SILGen...) turning protocol_method lookups into open_existential + witness_method sequences. In this patch, we handle normal generic method lookups, but property accesses still go through protocol_method.
Swift SVN r22437
Now the SILLinkage for functions and global variables is according to the swift visibility (private, internal or public).
In addition, the fact whether a function or global variable is considered as fragile, is kept in a separate flag at SIL level.
Previously the linkage was used for this (e.g. no inlining of less visible functions to more visible functions). But it had no effect,
because everything was public anyway.
For now this isFragile-flag is set for public transparent functions and for everything if a module is compiled with -sil-serialize-all,
i.e. for the stdlib.
For details see <rdar://problem/18201785> Set SILLinkage correctly and better handling of fragile functions.
The benefits of this change are:
*) Enable to eliminate unused private and internal functions
*) It should be possible now to use private in the stdlib
*) The symbol linkage is as one would expect (previously almost all symbols were public).
More details:
Specializations from fragile functions (e.g. from the stdlib) now get linkonce_odr,default
linkage instead of linkonce_odr,hidden, i.e. they have public visibility.
The reason is: if such a function is called from another fragile function (in the same module),
then it has to be visible from a third module, in case the fragile caller is inlined but not
the specialized function.
I had to update lots of test files, because many CHECK-LABEL lines include the linkage, which has changed.
The -sil-serialize-all option is now handled at SILGen and not at the Serializer.
This means that test files in sil format which are compiled with -sil-serialize-all
must have the [fragile] attribute set for all functions and globals.
The -disable-access-control option doesn't help anymore if the accessed module is not compiled
with -sil-serialize-all, because the linker will complain about unresolved symbols.
A final note: I tried to consider all the implications of this change, but it's not a low-risk change.
If you have any comments, please let me know.
Swift SVN r22215
That, and _BuiltinCharacterLiteralConvertible, are not actually useful
without special hidden switches being passed to the compiler. We don't
want to have to explain them to users.
Swift SVN r22036
The lexer can't handle "\x08". QuotedString currently is only used in ASTDumper,
SILPrinter and PrettyStackTrace, so changing the print function should not break
other things.
rdar://18020704
Swift SVN r21257
This allows UnicodeScalars to be constructed from an integer, rather
then from a string. Not only this avoids an unnecessary memory
allocation (!) when creating a UnicodeScalar, this also allows the
compiler to statically check that the string contains a single scalar
value (in the same way the compiler checks that Character contains only
a single extended grapheme cluster).
rdar://17966622
Swift SVN r21198
Introduce the new BooleanLiteralConvertible protocol for Boolean
literals. Take "true" and "false" as real keywords (which is most of the
reason for the testsuite churn). Make Bool BooleanLiteralConvertible
and the default Boolean literal type, and ObjCBool
BooleanLiteralConvertible. Fixes <rdar://problem/17405310> and the
recent regression that made ObjCBool not work with true/false.
Swift SVN r19728
This consolidates the \x, \u, and \U escape sequences into one \u{abc} escape sequence.
For now we still parse and cleanly reject the old forms with a nice error message, this
will eventually be removed in a later beta (tracked by rdar://17527814)
Swift SVN r19435
We haven't been advertising this syntax much, and it's closure form
was completely broken anyway, so don't jump through hoops to provide
great Fix-Its here.
Swift SVN r19277
These types are often useless and confusing to users who expect to be able to use Sequence or Generator as types in their own right like in C# or Java. While we're here, relax the rules for self-conformance to admit methods returning 'Self'. Covariant return types should not actually prevent a protocol type from conforming to itself, and the stdlib makes particular use of protocols with 'init' requirements which implicitly return Self.
Swift SVN r18989
There's a bit of a reshuffle of the ExplicitCastExpr subclasses:
- The existing ConditionalCheckedCastExpr expression node now represents
"as?".
- A new ForcedCheckedCastExpr node represents "as" when it is a
downcast.
- CoerceExpr represents "as" when it is a coercion.
- A new UnresolvedCheckedCastExpr node describes "as" before it has
been type-checked down to ForcedCheckedCastExpr or CoerceExpr. This
wasn't a strictly necessary change, but it helps us detangle what's
going on.
There are a few new diagnostics to help users avoid getting bitten by
as/as? mistakes:
- Custom errors when a forced downcast (as) is used as the operand
of postfix '!' or '?', with Fix-Its to remove the '!' or make the
downcast conditional (with as?), respectively.
- A warning when a forced downcast is injected into an optional,
with a suggestion to use a conditional downcast.
- A new error when the postfix '!' is used for a contextual
downcast, with a Fix-It to replace it with "as T" with the
contextual type T.
Lots of test updates, none of which felt like regressions. The new
tests are in test/expr/cast/optionals.swift.
Addresses <rdar://problem/17000058>
Swift SVN r18556
I didn't want to rip this logic out wholesale. There is a possibility
the character lexing can be reborn/revisited later, and
disabling it in the parser was easy.
Swift SVN r18102