In the case where we already have a guaranteed value, the borrow operation will
just return the guaranteed manage value. Thus it is ok to always just perform
the borrow unconditionally.
rdar://29791263
new API called ManagedValue::unmanagedBorrow() for places where we were really trying to model
an exclusive borrow.
ManagedValue::unmanagedBorrow() is just the old implementation.
rdar://29791263
This ensures that ownership is properly propagated forward through the use-def
graph.
This was the work that was stymied by issues relating to SILBuilder performing
local ARC dataflow. I ripped out that local dataflow in 6f4e2ab and added a
cheap ARC guaranteed dataflow pass that performs the same optimization.
Also in the process of doing this work, I found that there were many SILGen
tests that were either pattern matching in the wrong functions or had wrong
CHECK lines (for instance CHECK_NEXT). I fixed all of these issues and also
expanded many of the tests so that they verify ownership. The only work I left
for a future PR is that there are certain places in tests where we are using the
projection from an original value, instead of a copy. I marked those with a
message SEMANTIC ARC TODO so that they are easy to find.
rdar://28685236
Extend the use of
_ObjectiveCBridgeable._unconditionallyBridgeFromObjectiveC to all
bridged types rather than using the custom entry points. Note that
there is a lot of hackery around ensuring that the conformance is
correct, because Sema needs to anticipate that SILGen (or later SIL
passes) might need those conformances. This primarily affects the
overlays, but with generalized bridging that means any mixed
Objective-C/Swift framework with bridged types.
when working with autoreleased result conventions, and stop
emitting autorelease_return and strong_retain_autoreleased in
SILGen.
The previous representation, in which strong_retain_autoreleased
was divorced from the call site, allowed it to "wander off" and
be cloned. This would at best would break the optimization, but
it could also lead to broken IR due to some heroic but perhaps
misguided efforts in IRGen to produce the exact required code
pattern despite the representational flaws.
The SIL pattern for an autoreleased result now looks exactly
like the pattern for an owned result in both the caller and
the callee. This should be fine as long as interprocedural
optimizations are conservative about convention mismatches.
Optimizations that don't wish to be conservative here should
treat a convention mismatch as an autorelease (if the callee
has an autoreleased result) or a retain (if the formal type
of the call has an autoreleased result).
Fixes rdar://23810212, which is an IRGen miscompile after the
optimizer cloned a strong_retain_autoreleased. There's no
point in adding this test case because the new SIL pattern
inherently prevents this transformation by construction.
The 'autorelease_return' and 'strong_retain_autoreleased'
instructions are now dead, and I will remove them in a
follow-up commit.
Swift generates two entry points to @objc methods where one of
them is a thunk, and the inliner happily inlines the swift code
into the @objc thunk, effectively doubling the code size of some
@objc classes.
The performance inliner already knows not to inline large functions
into callers that are marked as thunks. This commit adds the [thunk]
attribute to the @objc thunks in an attempt to reduce code size.
rdar://22403108
Swift SVN r31498
The only caveat is that:
1. We do not properly recognize when we have a let binding and we
perform a guaranteed dynamic call. In such a case, we add an extra
retain, release pair around the call. In order to get that case I will
need to refactor some code in Callee. I want to make this change, but
not at the expense of getting the rest of this work in.
2. Some of the protocol witness thunks generated have unnecessary
retains or releases in a similar manner.
But this is a good first step.
I am going to send a large follow up email with all of the relevant results, so
I can let the bots chew on this a little bit.
rdar://19933044
Swift SVN r27241
We no longer need or use it since we can always refer to the same bit on
the applied function when deciding whether to inline during mandatory
inlining.
Resolves rdar://problem/19478366.
Swift SVN r26534
...and similar for NSDictionary and NSSet.
For APIs that don't have a reason to distinguish "empty" and "absent" cases,
we encourage standardizing on "empty" and marking the result as non-optional
(or in Objective-C, __nonnull). However, there are system APIs whose
implementations currently do return nil rather than an empty collection
instance. In these cases, we recommend /changing/ the API to return the
appropriate "empty" value instead.
However, this can cause problems for backwards-deployment: while the API is
truly non-optional on system vN, a program may encounter a nil return value
if run on system vN-1. Objective-C can generally deal with this (especially
if the only thing you do is ask for the count or try to iterate over the
collection) but Swift can't. Therefore, we've decided to "play nice" and
accept nil return values for the collection types (NSArray, NSDictionary,
and NSSet) and implicitly treat them as "empty" values if they are the
result of an imported function or method.
Note that the current implementation has a hole regarding subscript getters,
since we still make an AST-level thunk for these in the Clang importer.
We can probably get rid of those these days, but I didn't want to touch
them at this point. It seems unlikely that there will be a subscript that
(a) is for a collection type, and (b) mistakenly returned nil in the past
rather than an empty collection.
There's another hole where an ObjC client calls one of these mistakenly-nil-
returning methods and then immediately hands the result off by calling a
Swift method. However, we have to draw the line somewhere.
(We're actually going to do this for strings as well; coming soon.)
rdar://problem/19734621
Swift SVN r26479
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
Add the following functionality to the Swift compiler:
* covariant subtyping of Set
* upcasting, downcasting of Set
* automatic bridging between Set and NSSet, including
* NSSet params/return values in ObjC are imported as Set<NSObject>
* Set params/return values in Swift are visible to ObjC as NSSet
<rdar://problem/18853078> Implement Set<T> up and downcasting
Swift SVN r23751