This is important in case the inline restarts the pass pipeline.
In a sub-sequent invocation of the inlined it should receive a cleaned-up function so that it can make better estimations for further inlining.
As a compensation, reduce the caller-block limit of the inliner.
And add an overall block limit which is also taken into account for always-inline functions.
Extend NSNumber bridging to cover not only `Int`, `UInt`, `Double`, and `Bool`, but all of the standard types as well. Extend the `TypePreservingNSNumber` subclass to accommodate all of these types, so that we preserve type identity for `AnyHashable` and dynamic casting of Swift-bridged NSNumbers. If a pure Cocoa NSNumber is cast, just trust that the user knows what they're doing.
This XFAILs a couple of serialization tests that attempt to build the Foundation overlay, but which don't properly handle `gyb` files.
With this re-abstraction a specialized function has the same calling convention as if it would have been written with the specialized types in the first place.
In general this results in less alloc_stacks and load/stores.
It also can eliminate some re-abstraction thunks, e.g. if a generic closure is used in a non-generic context.
It some (hopefully rare) cases it may require to add re-abstraction thunks.
In case a function has multiple indirect results, only the first is converted to a direct result. This is an open TODO.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
On the whole it looks like this currently benefits performance.
As with the devirtualization pass, once the updated inliner is
committed, the position of this pass in the pipeline will change.
They aren't needed at the moment, and running the specialization pass
early might have resulted in some performance regressions.
We can add these back in (and in the appropriate place in the pipeline)
when the changes to unbundle this functionality from the inliner goes in.
Begin unbundling devirtualization, specialization, and inlining by
recreating the stand-alone generic specializer pass.
I've added a use of the pass to the pipeline, but this is almost
certainly not going to be the final location of where it runs. It's
primarily there to ensure this code gets exercised.
Since this is running prior to inlining, it changes the order that some
functions are specialized in, which means differences in the order of
output of one of the tests (one which similarly changed when
devirtualization, specialization, and inlining were bundled together).