When in an initializer, we allow setting into immutable properties
provided that the type of base in `base.member` matches that of that
initializer's containing type. This was an approximation for allowing
full access into `self` during initialization but this doesn't work when
passing in a different struct of the same type because that struct
should be still be immutable.
Check whether the base of the member access is the implicit self
parameter of the initializer before allowing mutation.
rdar://problem/19814302
Swift SVN r28634
We now produce tailored diagnostics for assignment operators that are passed a non-mutable LHS,
e.g.:
t.swift:14:3: error: cannot pass 'let' value 'x' to mutating binary operator '/='
x /= 19
~ ^
t.swift:13:1: note: change 'let' to 'var' to make it mutable
let x = 42
^~~
var
Swift SVN r27780
- <rdar://problem/16306600> QoI: passing a 'let' value as an inout results in an unfriendly diagnostic
- <rdar://problem/16927246> provide a fixit to change "let" to "var" if needing to mutate a variable
We now refer to an inout argument as such, e.g.:
t.swift:7:9: error: cannot pass 'let' value 'a' as inout argument
swap(&a, &b)
^
we also produce a note with a fixit to rewrite let->var in trivial cases where mutation is
being assed for, e.g.:
t.swift:3:3: note: change 'let' to 'var' to make it mutable
let a = 42
^~~
var
The note is produced by both Sema and DI.
Swift SVN r27774
We now produce diagnostics like:
- cannot pass 'let' value 'a' to mutating unary operator '++'
- cannot pass get-only property 'b' to mutating unary operator '++'
- cannot pass immutable value of type 'Int64' to mutating unary operator '++'
Swift SVN r27772
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
The previous patch to allow static class stored properties
inadvertently allowed 'class final' spellings for static
stored properties in classes. This patch only allows 'static'
spellings to create the global storage.
Swift SVN r24323
rdar://problem/17198298
- Allow 'static' in protocol property and func requirements, but not 'class'.
- Allow 'static' methods in classes - they are 'class final'.
- Only allow 'class' methods in classes (or extensions of classes)
- Remove now unneeded diagnostics related to finding 'static' in previously banned places.
- Update relevant diagnostics to make the new rules clear.
Swift SVN r24260
... now that we have an exquisitely shaved yak.
This provides a simple and uniform model for "let" constants: they are always either
immediately initialized in their declaration, or they are initialized dynamically
exactly once before any use.
This is a simple generalization of our current model for initializers, but enables
the use of let constants in more cases in local context, e.g. patterns like this:
let x : SomeThing
if condition {
x = foo()
} else {
x = bar()
}
use(x)
Previously this would have to be declared a "var" for no good reason: the value is
only ever initialized, never actually mutated.
The implementation of this is reasonably straight-forward now that the infrastructure
is in place: Sema treats 'let' constants as "settable" if they lack an initializer
(either in the declaration or in a non-PBD binding). This exposes them as an lvalue
at the AST level. SILGen then lowers these things to an alloc_stack, and DI enforces
the "initialization only" requirement that it already enforces for uninitialized 'let'
properties in structs/classes.
Swift SVN r23916
These changes make the following improvements to how we generate diagnostics for expression typecheck failure:
- Customizing a diagnostic for a specific expression kind is as easy as adding a new method to the FailureDiagnosis class,
and does not require intimate knowledge of the constraint solver’s inner workings.
- As part of this patch, I’ve introduced specialized diagnostics for call, binop, unop, subscript, assignment and inout
expressions, but we can go pretty far with this.
- This also opens up the possibility to customize diagnostics not just for the expression kind, but for the specific types
involved as well.
- For the purpose of presenting accurate type info, partially-specialized subexpressions are individually re-typechecked
free of any contextual types. This allows us to:
- Properly surface subexpression errors.
- Almost completely avoid any type variables in our diagnostics. In cases where they could not be eliminated, we now
substitute in "_".
- More accurately indicate the sources of errors.
- We do a much better job of diagnosing disjunction failures. (So no more nonsensical ‘UInt8’ error messages.)
- We now present reasonable error messages for overload resolution failures, informing the user of partially-matching
parameter lists when possible.
At the very least, these changes address the following bugs:
<rdar://problem/15863738> More information needed in type-checking error messages
<rdar://problem/16306600> QoI: passing a 'let' value as an inout results in an unfriendly diagnostic
<rdar://problem/16449805> Wrong error for struct-to-protocol downcast
<rdar://problem/16699932> improve type checker diagnostic when passing Double to function taking a Float
<rdar://problem/16707914> fatal error: Can't unwrap Optional.None…Optional.swift, line 75 running Master-Detail Swift app built from template
<rdar://problem/16785829> Inout parameter fixit
<rdar://problem/16900438> We shouldn't leak the internal type placeholder
<rdar://problem/16909379> confusing type check diagnostics
<rdar://problem/16951521> Extra arguments to functions result in an unhelpful error
<rdar://problem/16971025> Two Terrible Diagnostics
<rdar://problem/17007804> $T2 in compiler error string
<rdar://problem/17027483> Terrible diagnostic
<rdar://problem/17083239> Mysterious error using find() with Foundation types
<rdar://problem/17149771> Diagnostic for closure with no inferred return value leaks type variables
<rdar://problem/17212371> Swift poorly-worded error message when overload resolution fails on return type
<rdar://problem/17236976> QoI: Swift error for incorrectly typed parameter is confusing/misleading
<rdar://problem/17304200> Wrong error for non-self-conforming protocols
<rdar://problem/17321369> better error message for inout protocols
<rdar://problem/17539380> Swift error seems wrong
<rdar://problem/17559593> Bogus locationless "treating a forced downcast to 'NSData' as optional will never produce 'nil'" warning
<rdar://problem/17567973> 32-bit error message is really far from the mark: error: missing argument for parameter 'withFont' in call
<rdar://problem/17671058> Wrong error message: "Missing argument for parameter 'completion' in call"
<rdar://problem/17704609> Float is not convertible to UInt8
<rdar://problem/17705424> Poor error reporting for passing Doubles to NSColor: extra argument 'red' in call
<rdar://problem/17743603> Swift compiler gives misleading error message in "NSLayoutConstraint.constraintsWithVisualFormat("x", options: 123, metrics: nil, views: views)"
<rdar://problem/17784167> application of operator to generic type results in odd diagnostic
<rdar://problem/17801696> Awful diagnostic trying to construct an Int when .Int is around
<rdar://problem/17863882> cannot convert the expression's type '()' to type 'Seq'
<rdar://problem/17865869> "has different argument names" diagnostic when parameter defaulted-ness differs
<rdar://problem/17937593> Unclear error message for empty array literal without type context
<rdar://problem/17943023> QoI: compiler displays wrong error when a float is provided to a Int16 parameter in init method
<rdar://problem/17951148> Improve error messages for expressions inside if statements by pre-evaluating outside the 'if'
<rdar://problem/18057815> Unhelpful Swift error message
<rdar://problem/18077468> Incorrect argument label for insertSubview(...)
<rdar://problem/18079213> 'T1' is not identical to 'T2' lacks directionality
<rdar://problem/18086470> Confusing Swift error message: error: 'T' is not convertible to 'MirrorDisposition'
<rdar://problem/18098995> QoI: Unhelpful compiler error when leaving off an & on an inout parameter
<rdar://problem/18104379> Terrible error message
<rdar://problem/18121897> unexpected low-level error on assignment to immutable value through array writeback
<rdar://problem/18123596> unexpected error on self. capture inside class method
<rdar://problem/18152074> QoI: Improve diagnostic for type mismatch in dictionary subscripting
<rdar://problem/18242160> There could be a better error message when using [] instead of [:]
<rdar://problem/18242812> 6A1021a : Type variable leaked
<rdar://problem/18331819> Unclear error message when trying to set an element of an array constant (Swift)
<rdar://problem/18414834> Bad diagnostics example
<rdar://problem/18422468> Calculation of constant value yields unexplainable error
<rdar://problem/18427217> Misleading error message makes debugging difficult
<rdar://problem/18439742> Misleading error: "cannot invoke" mentions completely unrelated types as arguments
<rdar://problem/18535804> Wrong compiler error from swift compiler
<rdar://problem/18567914> Xcode 6.1. GM, Swift, assignment from Int64 to NSNumber. Warning shown as problem with UInt8
<rdar://problem/18784027> Negating Int? Yields Float
<rdar://problem/17691565> attempt to modify a 'let' variable with ++ results in typecheck error about @lvalue Float
<rdar://problem/17164001> "++" on let value could give a better error message
Swift SVN r23782
Start capitalizing on some of the new diagnostic machinery in a few different ways:
- When mining constraints for type information, utilize constraints "favored" by the overload resolution process.
- When printing type variables, if the variable was created by opening a literal expression, utilize the literal
default type or conformance if possible.
- Utilize syntactic information when crafting diagnostics:
- If the constraint miner can produce a better diagnostic than the recorded failure, diagnose via constraints.
- Factor in the expression kind when choosing which types to include in a diagnostic message.
- Start customizing diagnostics based on the amount of type data available.
What does all this mean?
- Fewer type variables leaking into diagnostic messages.
- Far better diagnostics for overload resolution failures. Specifically, we now print proper argument type data
for failed function calls.
- No more "'Foo' is not convertible to 'Foo'" error messages
- A greater emphasis on type data means less dependence on the ordering of failed constraints. This means fewer
inscrutable diagnostics complaining about 'UInt8' when all the constituent expressions are of type Float.
So we still have a ways to go, but these changes should greatly improve the number of head-scratchers served up
by the type checker.
These changes address the following radars:
rdar://problem/17618403
rdar://problem/17559042
rdar://problem/17007456
rdar://problem/17559042
rdar://problem/17590992
rdar://problem/17646988
rdar://problem/16979859
rdar://problem/16922560
rdar://problem/17144902
rdar://problem/16616948
rdar://problem/16756363
rdar://problem/16338509
Swift SVN r20927
Modify TypeBase::getRValueType to structurally convert lvalues embedded in tuple and paren types. Inside the constraint solver, coerce types to rvalues based on the structural 'isLValueType' test rather than shallow 'is<LValueType>' checking. Fixes <rdar://problem/17507421>, but exposes an issue with call argument matching and lvalues <rdar://problem/17786730>.
Swift SVN r20442
Also:
- merge the test/decl/func/functions_new.swift testcase into test/Sema/immutability.swift,
where the bulk of similar tests are.
- Move the type checking logic for 'dynamic' out of ValidateAttrs into TypeCheckAttrs
- Change the encoding for 'override' to 49 so that stuff vbr's so much more densely :-)
Swift SVN r20006
This only tackles the protocol case (<rdar://problem/17510790>); it
does not yet generalize to an arbitrary "class" requirement on either
existentials or generics.
Swift SVN r19896
JoeP helped tweak things to ensure that pointer conversions are still
considered, but we no longer need the disjunction on InOutExprs to accommodate
user-defined inout conversions.
This causes some regressions in error reporting:
<rdar://problem/17489983> inout type mismatches complain about '@lvalue inout T'
<rdar://problem/17489894> inout not rejected as operand to assignment operator
Swift SVN r19306
This reverts commit r19085, which broke the following tests.
Swift :: Constraints/super_constructor.swift
Swift :: expr/postfix/dot/init_ref_delegation.swift
Swift SVN r19098
var decls. I was originally intending to use this for argument lists, but I
don't think that's a great direction to go anymore.
In any case, it seems uncontroversial to enforce immutability on foreach
enumation patterns, so I did that (see testcase)
Swift SVN r11124