When a requirement mentions a concrete type, that type might utter
other types (e.g., Set<T>) that infer requirements (here, T:
Hashable). Perform requirement inference for such types.
Part of rdar://problem/31520386.
ArchetypeBuilder::finalize() is needed to tie up any loose ends before
requesting a generic signature or generic environment. Make sure it
gets called consistently.
Previously, validateDecl() would check if the declaration had an
interface type and use that as an indication not to proceed.
However for functions we can only set an interface type after
checking the generic signature, so a recursive call to validateDecl()
on a function would "steal" the outer call and complete validation.
For generic types, this meant we could have a declaration with a
valid interface type but no generic signature.
Both cases were problematic, so narrow workarounds were put in
place with additional new flags. This made the code harder to
reason about.
This patch consolidates the flags and establishes new invariants:
- If validateDecl() returns and the declaration has no interface
type and the isBeingValidated() flag is not set, it means one
of the parent contexts is being validated by an outer recursive
call.
- If validateDecl() returns and the declaration has the
isBeingValidated() flag set, it may or may not have an interface
type. In this case, the declaration itself is being validated
by an outer recursive call.
- If validateDecl() returns and the declaration has an interface
type and the isBeingValidated() flag is not set, it means the
declaration and all of its parent contexts are fully validated
and ready for use.
In general, we still want name lookup to find things that have an
interface type but are not in a valid generic context, so for this
reason nominal types and associated types get an interface type as
early as possible.
Most other code only wants to see fully formed decls, so a new
hasValidSignature() method returns true iff the interface type is
set and the isBeingValidated() flag is not set.
For example, while resolving a type, we can resolve an unqualified
reference to a nominal type without a valid signature. However, when
applying generic parameters, the hasValidSignature() flag is used
to ensure we error out instead of crashing if the generic signature
has not yet been formed.
- In functions called from resolveType(), consistently
use a Type() return value to indicate 'unsatisfied
dependency', and ErrorType to indicate failure.
- Plumb the unsatisfiedDependency callback through the
resolution of the arguments of BoundGenericTypes, and
also pass down the options.
- Before doing a conformance check on the argument of a
BoundGenericType, kick off a TypeCheckSuperclass request
if the type in question is a class. This ensures we don't
recurse through NominalTypeDecl::prepareConformanceTable(),
which wants to see a class with a valid superclass.
- The ResolveTypeOfDecl request was assuming that
the request was satisfied after calling validateDecl().
This is not the case when the ITC is invoked from a
recursive call to validateDecl(), hack this up by returning
*true* from isResolveTypeDeclSatisfied(); otherwise we
assert in satisfy(), and we can't make forward progress
in this case anyway.
- Fix a bug in cycle breaking; it seems if we don't invoke
the cycle break callback on all pending requests, we end
up looping forever in an outer call to satisfy().
- Remove unused TR_GlobalTypeAlias option.
We no longer need a separate "pass" that creates an archetype builder
that inherits context archetypes, because we no longer ever inherit
context archetypes.
This function did three things:
- In debug builds, record an association between the newly-created
context archetypes and the current DeclContext.
- Set the accessibility of the GenericTypeParamDecls as appropriate.
- Re-check the types written in the GenericParamList.
The last step was not needed, because we no longer serialize
GenericParamLists, or care if the RequirementRepr contains valid
types at all. The other two have been moved elsewhere.
First, ensure all ParamDecls that are synthesized from scratch are given
both a contextual type and an interface type.
For ParamDecls written in source, add a new recordParamType() method to
GenericTypeResolver. This calls setType() or setInterfaceType() as
appropriate.
Interestingly enough a handful of diagnostics in the test suite have
improved. I'm not sure why, but I'll take it.
The ParamDecl::createUnboundSelf() method is now only used in the parser,
and no longer sets the type of the self parameter to the unbound generic
type. This was wrong anyway, since the type was always being overwritten.
This allows us to remove DeclContext::getSelfTypeOfContext().
Also, ensure that FuncDecl::getBodyResultTypeLoc() always has an interface
type for synthesized declarations, eliminating a mapTypeOutOfContext()
call when computing the function interface type in configureInterfaceType().
Finally, clean up the logic for resolving the DynamicSelfType. We now
get the interface or contextual type of 'Self' via the resolver, instead
of always getting the contextual type and patching it up inside
configureInterfaceType().
The previous patches regressed a test where we used to diagnose
(poorly) a circular associated type, like so:
associatedtype e: e
With the error "inheritance from non-protocol, non-class type 'e'".
This error went away, because we end up not setting the interface
type of the associated type early enough. Instead, we return an
ErrorType from resolveTypeInContext() and diagnose nothing.
With this patch, emit a diagnostic at the point where the ErrorType
first appears.
Also, remove the isRecursive() bit from AssociatedTypeDecl, and
remove isBeingTypeChecked() which duplicates a bit with the same
name in Decl.
When checking a conformance of a concrete type to a protocol, we
effectively checked the associated types twice -- once when
deriving them, and another time at the end, where we performed
a substitution of the protocol 'Self' type to the concrete type.
The latter checked superclass constraints, while the former did not.
However, this trick no longer works with minimized generic
signatures, because <P : Self> no longer has redundant requirements
for the associated types of 'P'.
Instead, check superclass constraints at the same time as checking
conformances.
and provide a fix-it to move it to the new location as referenced
in SE-0081.
Fix up a few stray places in the standard library that is still using
the old syntax.
Update any ./test files that aren't expecting the new warning/fix-it
in -verify mode.
While investigating what I thought was a new crash due to this new
diagnostic, I discovered two sources of quite a few compiler crashers
related to unterminated generic parameter lists, where the right
angle bracket source location was getting unconditionally set to
the current token, even though it wasn't actually a '>'.
Every call to validateGenericTypeSignature() had the same
boilerplate following; move the common logic into that
function.
As one might expect, each callsite had slight variants on
the same underlying logic -- this makes them consistent.
Also, this slightly widens the scope during which
GenericTypeDecl::isValidatingGenericSignature() returns
true.
Interesting, that change introduces a diagnostic in an
existing testcase where previously there was none:
protocol P {
associatedtype T
}
struct S<A: P where A.T == S<A>> {}
While it looks like this generic signature was built
correctly, in fact I think we weren't computing
conformances for the substitution of 'A' in 'S<A>'.
After trying small variations on the above testcase,
I quickly ran into SILGen crashes, which the diagnostic
now prevents. A few interesting cases still crash.
See test/decl/protocol/req/recursion.swift for the
gory details.
Adds an associatedtype keyword to the parser tokens, and accepts either
typealias or associatedtype to create an AssociatedTypeDecl, warning
that the former is deprecated. The ASTPrinter now emits associatedtype
for AssociatedTypeDecls.
Separated AssociatedType from TypeAlias as two different kinds of
CodeCompletionDeclKinds. This part probably doesn’t turn out to be
absolutely necessary currently, but it is nice cleanup from formerly
specifically glomming the two together.
And then many, many changes to tests. The actual new tests for the fixits
is at the end of Generics/associated_types.swift.
This would just set the NominalTypeDecl's declared type to
ErrorType, which caused problems elsewhere.
Instead, generalize the logic used for AbstractFunctionDecl.
This correctly wires up the GenericTypeParamDecl's archetypes even
if the signature didn't validate, fixing crashes if the generic
parameters of the type are referenced.
Cleans up AST printing somewhat as well as providing slightly better
type-to-declaration mappings for annotated AST printing and indexing.
Swift SVN r32420