Instead of the simple "expected identifier in declaration", the error will now read "keyword '%' cannot be used as an identifier here", and will be accompanied by a note suggesting escaping the keyword with backticks, as well as a fixit.
https://bugs.swift.org/browse/SR-3167
If we found any error in a list, in most cases, we cannot expect that the
following tokens could construct a valid element. Skip them, instead of trying
to parse them as the next element. This significally reduces bogus diagnostics.
Bailout if seeing tok::eof or token that can never start a element, after
parsing an element. This silences superfluous "expected ',' separator" error,
or misleading expected declaration error. What we should emit is
"expected ')' in expression list, or "expected '}' in struct".
- Remove stray newline
- Adjust wording when recommending backticks for a keyword identifier
- Provide fix-it when encountering a keyword as an identifier
rdar://problem/25761380
When declaring a function like func repeat(){}, the diagnostic is
"expected an identifier" but 'repeat' looks like a reasonable
identifier at first glance, so actually say why it isn't.
rdar://problem/25761380
- Improve the specific cases of nil and empty collection literals.
- Improve cases of contextual member lookup where the result type of the looked up member disagrees with context.
- Add some fixme's to the testsuite for cases of this diagnostic that should be diagnosed in other ways.
ASTPrinter of type variables was trying to dig an original type out of the
locator and archetype that opened the type variable in the first place. This
was prone to failure and never helped, so just always print type vars as _.
The affected diagnostics always come out better and this saves a word of storage
for each type variable.
Rearrange diagnoseGeneralConversionFailure to diagnose structural problems
even if we have some UnresolvedTypes floating around, then reject constraint
failures with UnresolvedTypes in them even harder. This keeps us giving
good errors about failures where we have a structural problem (with buried
irrelevant details) while not complaining about cases that are actually
ambiguous.
The end result of this is that we produce a lot better error messages in the
case of failed archetype inference. This also highlights the poor job we do
handling multi-stmt closureexprs...
and diagnoseGeneralConversionFailure(). The previous approach of trying
to dig into anchors would often lead to complaining about types at
different levels in the same diagnostic, and the complexity of the former
code isn't needed now that other changes have landed.
Swift SVN r31036
The exact message is mostly immaterial at this point, but without the
change we end up recursively validating the property, marking it invalid,
and then never actually emitting a diagnostic, leaving SILGen and
Serialization to go ahead and fail.
rdar://problem/20913392
Swift SVN r30830
which we have a contextual type that was the failure reason. These are a bit
longer but also more explicit than the previous diagnostics.
Swift SVN r30669
in case the tuple type has fewer elements.
<rdar://problem/21081340> SourceKit crashed while rapidly undoing: Assertion failed: (Index < Length && "Invalid index!")
Swift SVN r29082
initializer has been type-checked, rather than a bit for the entire
PatternBindingDecl.
<rdar://problem/21057425> Crash while compiling attached test-app.
Swift SVN r29049
var/let bindings to _ when they are never used, and use some values that
are only written. This is a testsuite cleanup, NFC. More to come.
Swift SVN r28406
This pushes tuple pattern labels forward:
- Actually record them in TuplePatternElt.
- Remove the tuple shuffle ban that prevents some cases
(e.g. the one in the radar) of a tuple with labels being shuffled
onto a tuple without labels.
- Remove dead code enabled by removing the restriction.
Swift SVN r26852
- Enhance PBD with a whereExpr/elseStmt field to hold this.
- Start parsing the pattern of let/var decls as a potentially refutable pattern. It becomes
a semantic error to use a refutable pattern without an 'else' (diagnostics not in place yet).
- Change validatePatternBindingDecl to use 'defer' instead of a goto to ensure cleanups on exit.
- Have it resolve the pattern in a PBD, rewriting it from expressions into pattern nodes when valid.
- Teach resolvePattern to handle TypedPatterns now that they can appear (wrapping) refutable patterns.
- Teach resolvePattern to handle refutable patterns in PBD's without initializers by emitting a diagnostic
instead of by barfing, fixing regressions on validation tests my previous patch caused, and fixing
two existing validation test crashers.
Sema, silgen, and more tests coming later.
Swift SVN r26706
requires pushing the types out. The only interesting one is this diff:
- var (e,f,g:(),h) = MRV()
+ var (e,f,g,h) : (Int, Float, (), Double) = MRV()
... where the type annotation is required to silence the warning about "void type
may be unexpected". This seems perfectly reasonable to me.
Swift SVN r26161
warning, in the case of an AnyObject or AnyObject? type. Keep it around for ()
and AnyObject.Type.
The rationale for checking this has been reduced as the SDK is getting audited and
improved with generics, and it is problematic in the face of pattern matching, where
there isn't a simple pattern for silencing it.
Swift SVN r26105
un-type-annotated AnyObject binding in "if let", and allows general
patterns in if-let.
This also reverts some unrelated QoI improvements that went in with those
patches, but I'll add those back next.
Swift SVN r25507
conditional context. There is no point diagnosing it here (just like a foreach loop) because
the if/let is just unwrapping the optional in the initializer expression.
Removing this requirement eliminates a bunch of extraneous type annotations in the testsuite.
Swift SVN r25370
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
... now that we have an exquisitely shaved yak.
This provides a simple and uniform model for "let" constants: they are always either
immediately initialized in their declaration, or they are initialized dynamically
exactly once before any use.
This is a simple generalization of our current model for initializers, but enables
the use of let constants in more cases in local context, e.g. patterns like this:
let x : SomeThing
if condition {
x = foo()
} else {
x = bar()
}
use(x)
Previously this would have to be declared a "var" for no good reason: the value is
only ever initialized, never actually mutated.
The implementation of this is reasonably straight-forward now that the infrastructure
is in place: Sema treats 'let' constants as "settable" if they lack an initializer
(either in the declaration or in a non-PBD binding). This exposes them as an lvalue
at the AST level. SILGen then lowers these things to an alloc_stack, and DI enforces
the "initialization only" requirement that it already enforces for uninitialized 'let'
properties in structs/classes.
Swift SVN r23916
- We switch to a model where let properties may be "initialized", but never
reassigned. Specifically, immutable properties in structs/classes may have
an init value specified in their declaration (but can then never be reset
in any init implementation) or not (in which case they must be initialized
exactly once on all paths through every init. This makes a lot more sense
for immutability, defines several problems away, and provides a path to
supporting things like (rdar://16181314)
- We now *never* default initialize an immutable property. Formerly
we would default initialize optional let properties to nil, but this
isn't actually useful, and allows an error of omission with let
properties.
This resolves: <rdar://problem/19035287> let properties should only be initializable, not reassignable
and possibly other radars.
Swift SVN r23779
When the solver has attempted to produce a solution using the default
literal type tha has failed, dont' try every type that conforms to
that literal type. Instead, try the bridged class type (which deals
with the common AnyObject case) or one of two other options:
- For integer literals, try the default floating point type (Double)
- For string literals, try the standard library's AssertString (this
is a temporary hack)
This limits exponential blow-up in cases where the literal's type
cannot be determined from context. Addresses rdar://problem/18307267.
Swift SVN r22131
Start capitalizing on some of the new diagnostic machinery in a few different ways:
- When mining constraints for type information, utilize constraints "favored" by the overload resolution process.
- When printing type variables, if the variable was created by opening a literal expression, utilize the literal
default type or conformance if possible.
- Utilize syntactic information when crafting diagnostics:
- If the constraint miner can produce a better diagnostic than the recorded failure, diagnose via constraints.
- Factor in the expression kind when choosing which types to include in a diagnostic message.
- Start customizing diagnostics based on the amount of type data available.
What does all this mean?
- Fewer type variables leaking into diagnostic messages.
- Far better diagnostics for overload resolution failures. Specifically, we now print proper argument type data
for failed function calls.
- No more "'Foo' is not convertible to 'Foo'" error messages
- A greater emphasis on type data means less dependence on the ordering of failed constraints. This means fewer
inscrutable diagnostics complaining about 'UInt8' when all the constituent expressions are of type Float.
So we still have a ways to go, but these changes should greatly improve the number of head-scratchers served up
by the type checker.
These changes address the following radars:
rdar://problem/17618403
rdar://problem/17559042
rdar://problem/17007456
rdar://problem/17559042
rdar://problem/17590992
rdar://problem/17646988
rdar://problem/16979859
rdar://problem/16922560
rdar://problem/17144902
rdar://problem/16616948
rdar://problem/16756363
rdar://problem/16338509
Swift SVN r20927