If 'x.init' appears as a member reference other than 'self.init' or 'super.init' within an initializer, treat it as a regular static member lookup for 'init' members. This allows a more explicit syntax for dynamic initializations; 'self.someMetatype()' looks too much like it's invoking a method. It also allows for partial applications of initializers using 'someMetatype.init' (though this needs some SILGen fixes, coming up next). While we're in the neighborhood, do some other correctness and QoI fixes:
- Only lookup initializers as members of metatypes, not instances, and add a fixit (instead of crashing) to insert '.dynamicType' if the initializer is found on an instance.
- Make it so that constructing a class-constrained archetype type correctly requires a 'required' or protocol initializer.
- Warn on unused initializer results. This seems to me like just the right thing to do, but is also a small guard against the fact that 'self.init' is now valid in a static method, but produces a newly-constructed value instead of delegating initialization (and evaluating to void).
Swift SVN r29344
Instead of forcing full application of '{super,self}.init' in the parser, and installing the RebindSelf semantic expr node early, make these constraints to Sema-time checks, and parse '<expr>.init' as a regular postfix production. This is a better separation of concerns, and also opens the door to supporting 'metatype.init()' in more general expression contexts (though that part still needs some follow-up sema work).
Swift SVN r29343
If P is a protocol, calling static methods or constructors
via values of type P.Protocol makes no sense, so let's prohibit
this.
Fixes <rdar://problem/21176676>.
Swift SVN r29338
If you want to make the parameter and argument label the same in
places where you don't get the argument label for free (i.e., the
first parameter of a function or a parameter of a subscript),
double-up the identifier:
func translate(dx dx: Int, dy: Int) { }
Make this a warning with Fix-Its to ease migration. Part of
rdar://problem/17218256.
Swift SVN r27715
The rule changes are as follows:
* All functions (introduced with the 'func' keyword) have argument
labels for arguments beyond the first, by default. Methods are no
longer special in this regard.
* The presence of a default argument no longer implies an argument
label.
The actual changes to the parser and printer are fairly simple; the
rest of the noise is updating the standard library, overlays, tests,
etc.
With the standard library, this change is intended to be API neutral:
I've added/removed #'s and _'s as appropriate to keep the user
interface the same. If we want to separately consider using argument
labels for more free functions now that the defaults in the language
have shifted, we can tackle that separately.
Fixes rdar://problem/17218256.
Swift SVN r27704
func a(b: Int = 0) {}
let c = a // should be (b: Int) -> Void, not (b: Int = 0) -> Void
Fixes crash suite #23.
rdar://problem/18232797
Swift SVN r24747
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
These changes make the following improvements to how we generate diagnostics for expression typecheck failure:
- Customizing a diagnostic for a specific expression kind is as easy as adding a new method to the FailureDiagnosis class,
and does not require intimate knowledge of the constraint solver’s inner workings.
- As part of this patch, I’ve introduced specialized diagnostics for call, binop, unop, subscript, assignment and inout
expressions, but we can go pretty far with this.
- This also opens up the possibility to customize diagnostics not just for the expression kind, but for the specific types
involved as well.
- For the purpose of presenting accurate type info, partially-specialized subexpressions are individually re-typechecked
free of any contextual types. This allows us to:
- Properly surface subexpression errors.
- Almost completely avoid any type variables in our diagnostics. In cases where they could not be eliminated, we now
substitute in "_".
- More accurately indicate the sources of errors.
- We do a much better job of diagnosing disjunction failures. (So no more nonsensical ‘UInt8’ error messages.)
- We now present reasonable error messages for overload resolution failures, informing the user of partially-matching
parameter lists when possible.
At the very least, these changes address the following bugs:
<rdar://problem/15863738> More information needed in type-checking error messages
<rdar://problem/16306600> QoI: passing a 'let' value as an inout results in an unfriendly diagnostic
<rdar://problem/16449805> Wrong error for struct-to-protocol downcast
<rdar://problem/16699932> improve type checker diagnostic when passing Double to function taking a Float
<rdar://problem/16707914> fatal error: Can't unwrap Optional.None…Optional.swift, line 75 running Master-Detail Swift app built from template
<rdar://problem/16785829> Inout parameter fixit
<rdar://problem/16900438> We shouldn't leak the internal type placeholder
<rdar://problem/16909379> confusing type check diagnostics
<rdar://problem/16951521> Extra arguments to functions result in an unhelpful error
<rdar://problem/16971025> Two Terrible Diagnostics
<rdar://problem/17007804> $T2 in compiler error string
<rdar://problem/17027483> Terrible diagnostic
<rdar://problem/17083239> Mysterious error using find() with Foundation types
<rdar://problem/17149771> Diagnostic for closure with no inferred return value leaks type variables
<rdar://problem/17212371> Swift poorly-worded error message when overload resolution fails on return type
<rdar://problem/17236976> QoI: Swift error for incorrectly typed parameter is confusing/misleading
<rdar://problem/17304200> Wrong error for non-self-conforming protocols
<rdar://problem/17321369> better error message for inout protocols
<rdar://problem/17539380> Swift error seems wrong
<rdar://problem/17559593> Bogus locationless "treating a forced downcast to 'NSData' as optional will never produce 'nil'" warning
<rdar://problem/17567973> 32-bit error message is really far from the mark: error: missing argument for parameter 'withFont' in call
<rdar://problem/17671058> Wrong error message: "Missing argument for parameter 'completion' in call"
<rdar://problem/17704609> Float is not convertible to UInt8
<rdar://problem/17705424> Poor error reporting for passing Doubles to NSColor: extra argument 'red' in call
<rdar://problem/17743603> Swift compiler gives misleading error message in "NSLayoutConstraint.constraintsWithVisualFormat("x", options: 123, metrics: nil, views: views)"
<rdar://problem/17784167> application of operator to generic type results in odd diagnostic
<rdar://problem/17801696> Awful diagnostic trying to construct an Int when .Int is around
<rdar://problem/17863882> cannot convert the expression's type '()' to type 'Seq'
<rdar://problem/17865869> "has different argument names" diagnostic when parameter defaulted-ness differs
<rdar://problem/17937593> Unclear error message for empty array literal without type context
<rdar://problem/17943023> QoI: compiler displays wrong error when a float is provided to a Int16 parameter in init method
<rdar://problem/17951148> Improve error messages for expressions inside if statements by pre-evaluating outside the 'if'
<rdar://problem/18057815> Unhelpful Swift error message
<rdar://problem/18077468> Incorrect argument label for insertSubview(...)
<rdar://problem/18079213> 'T1' is not identical to 'T2' lacks directionality
<rdar://problem/18086470> Confusing Swift error message: error: 'T' is not convertible to 'MirrorDisposition'
<rdar://problem/18098995> QoI: Unhelpful compiler error when leaving off an & on an inout parameter
<rdar://problem/18104379> Terrible error message
<rdar://problem/18121897> unexpected low-level error on assignment to immutable value through array writeback
<rdar://problem/18123596> unexpected error on self. capture inside class method
<rdar://problem/18152074> QoI: Improve diagnostic for type mismatch in dictionary subscripting
<rdar://problem/18242160> There could be a better error message when using [] instead of [:]
<rdar://problem/18242812> 6A1021a : Type variable leaked
<rdar://problem/18331819> Unclear error message when trying to set an element of an array constant (Swift)
<rdar://problem/18414834> Bad diagnostics example
<rdar://problem/18422468> Calculation of constant value yields unexplainable error
<rdar://problem/18427217> Misleading error message makes debugging difficult
<rdar://problem/18439742> Misleading error: "cannot invoke" mentions completely unrelated types as arguments
<rdar://problem/18535804> Wrong compiler error from swift compiler
<rdar://problem/18567914> Xcode 6.1. GM, Swift, assignment from Int64 to NSNumber. Warning shown as problem with UInt8
<rdar://problem/18784027> Negating Int? Yields Float
<rdar://problem/17691565> attempt to modify a 'let' variable with ++ results in typecheck error about @lvalue Float
<rdar://problem/17164001> "++" on let value could give a better error message
Swift SVN r23782
attribute is a "modifier" of a decl, not an "attribute" and thus shouldn't
be spelt with an @ sign. Teach the parser to parse "@foo" but reject it with
a nice diagnostic and a fixit if "foo" is a decl modifier.
Move 'dynamic' over to this (since it simplifies some code), and switch the
@optional and @required attributes to be declmodifiers (eliminating their @'s).
Swift SVN r19787
If the lookup was resolved by optional unwrapping, unwrap the metatype when we apply the solution so we don't try to create an invalid metatype conversion from T?.Type to T.Type. Fixes <rdar://problem/17542185>.
Swift SVN r19500
When we see a '.member' expression in optional context, look for the member in the optional's object type if it isn't found in Optional itself. <rdar://problem/16125392>
Swift SVN r19469
There's a bit of a reshuffle of the ExplicitCastExpr subclasses:
- The existing ConditionalCheckedCastExpr expression node now represents
"as?".
- A new ForcedCheckedCastExpr node represents "as" when it is a
downcast.
- CoerceExpr represents "as" when it is a coercion.
- A new UnresolvedCheckedCastExpr node describes "as" before it has
been type-checked down to ForcedCheckedCastExpr or CoerceExpr. This
wasn't a strictly necessary change, but it helps us detangle what's
going on.
There are a few new diagnostics to help users avoid getting bitten by
as/as? mistakes:
- Custom errors when a forced downcast (as) is used as the operand
of postfix '!' or '?', with Fix-Its to remove the '!' or make the
downcast conditional (with as?), respectively.
- A warning when a forced downcast is injected into an optional,
with a suggestion to use a conditional downcast.
- A new error when the postfix '!' is used for a contextual
downcast, with a Fix-It to replace it with "as T" with the
contextual type T.
Lots of test updates, none of which felt like regressions. The new
tests are in test/expr/cast/optionals.swift.
Addresses <rdar://problem/17000058>
Swift SVN r18556
Previously, we were relying on user-defined conversions to perform the
final bridging from the Objective-C class type (e.g., NSString) to its
Swift value type (String). That works for NSString <-> String, but not
for arbitrary arrays. Use the bridgeFromObjectiveC() witness instead,
so we can handle:
let obj: AnyObject = ...
let strArr: String[] = obj!
Fixes <rdar://problem/16952771>.
Swift SVN r18422
We had our transition path, and now it's time to kill it because it's
causing problems <rdar://problem/16672558>.
Amusing note: the SILGen test change is actually an improvement. We
weren't rebinding self when performing initializer delegation with the
separated call syntax.
Swift SVN r16707
We are removing this syntax. To stage the move, first error with
Fix-Its to rewrite to the keyword-argument syntax. In a week or so,
we'll remove all of the code supporting the "separated" call syntax.
Swift SVN r15833
Factor an IdentityExpr base class out of ParenExpr, and migrate most of the logic to see through ParenExprs to see through IdentityExprs instead. Add DotSelfExpr as a new subclass of IdentityExpr, produced by parsing 'x.self'.
Swift SVN r14381
An arbitrary value of class metatype cannot be used to construct an
object, because there's no guarantee that a given subclass will
provide that initializer.
Swift SVN r14175
Implement several rules that determine when an identifier on a new
line is a continuation of a selector-style call on a previous line:
- In certain contexts, such as parentheses or square brackets, it's
always a continuation because one does not split statements in
those contexts;
- Otherwise, compare the leading whitespace on the line containing
the nearest enclosing statement or declaration to the leading
whitespace for the line containing the identifier.
The leading whitespace for a line is currently defined as all space
and tab characters from the start of the line up to the first
non-space, non-tab character. Leading whitespace is compared via a
string comparison, which eliminates any dependency on the width of a
tab. One can run into a few amusing cases where adjacent lines that
look indented (under some specific tab width) aren't actually indented
according to this rule because there are different mixes of tabs and
spaces in the two lines. See the bottom of call-suffix-indent.swift
for an example.
I had to adjust two test cases that had lines with slightly different
indentation. The diagnostics here are awful; I've made no attempt at
improving them.
Swift SVN r13843
An expression of DynamicLookup type can be unconditionally downcast to
any class type via the postfix '!'. This will allow one to replace
var w : NSWindow = (nsarray[0] as NSWindow)!
with
var w : NSWindow = nsarray[0]!
The current implementation is fairly limited: it only works when the
operand of '!' is an rvalue of type DynamicLookup, and we don't ensure
that the result is a class type. Nonetheless, it cleans up some of
ListMaker nicely.
This is the first client of disjunction constraints, which were added
in r9142.
Swift SVN r9151
This moves trailing closures from expr-postfix up to the level of
expr, and introduces an intermediate level (expr-basic) for places
that need to parse expressions followed by curly braces, such as
if/while/switch/for. Trailing closures are still restricted to occur
after expr-postfix, although the parser itself parses a slightly more
general and then complains if it got more than an expr-postfix.
Swift SVN r5256
Trailing closure syntax allows one to write a closure following any
other postfix expression, which passes the closure to that postfix
expression as an arguments. For example:
sort(fruits) { |lhs, rhs|
print("Comparing \(lhs) to \(rhs)\n")
return lhs > rhs
}
As a temporary limitation to work around the ambiguity with
if foo { ... } { ... }
we require trailing closures to have an explicit parameter list, e.g.,
if foo { || ... } { ... }
Swift SVN r5210