1. Make sure the actions taken by fixits are reflected in diagnostics messages.
2. Issue missing cases diagnostics at the start of the switch statement instead of its end.
3. Use <#code#> instead of <#Code#> in the stub.
This lets you match `case .foo` when `foo` resolves to any static member, instead of only a `case`, albeit without the exhaustiveness checking and subpattern capabilities of proper cases. While we're here, adjust the type system we set up for unresolved patterns embedded in expressions so that we give better signal in the error messages too.
In particular, it doesn't "toll-free bridge" to the Error existential on non-ObjC-interop platforms, and we would miscompile as if it could. This should fix SR-585.
This used to cause SILGen to capture and subsequently load `self` as a
constant. Then, when the super call was SILGen’d, it assumed that
`self` would be loaded Boxed. Diagnose before hitting SILGen so we
don’t have to pollute Lowering with code that handles `self` in this
odd position.
Addresses SR-2605.
If you're refactoring a `guard` into an `if`, it's easy to
accidentally end up with invalid code like this in the transition:
```
if condition else {
}
```
The parser rightly complains about the `else`, but has poor recovery
afterward, interpreting the following brace as a closure, which may in
turn lead to other unhelpful errors after:
```
error: expected '{' after 'if' condition
if condition else {
^
error: braced block of statements is an unused closure
if condition else {
^
```
Improve the diagnostics to instead explicitly detect this pattern and
mark it as an error.
From the Swift documentation:
"If you define an optional variable without providing a default value,
the variable is automatically set to nil for you."
This fixes several issues:
- By default parent types of alias types are not printed which results in
- Erroneous fixits, for example when casting to 'Notification.Name' from a string, which ends up adding erroneous cast
as "Name(rawValue: ...)"
- Hard to understand types in code-completion results and diagnostics
- When printing with 'fully-qualified' option typealias types are printed erroneously like this "<PARENT>.Type.<TYPEALIAS>"
The change make typealias printing same as nominal types and addresses the above.
String literal expressions, as well as the magic literals #file and
tuple value that is then fed into one or two call expressions. For
string literals, that tuple value was implicitly splatted, breaking
AST invariants.
Instead, keep string literals and these magic literals that produce a
string as a single expression node, but store the declarations that
will be used to transform the raw literal into the complete
literal. SILGen will form the appropriate calls. This representation
is far simpler---the AST no longer has a bunch of implicit nodes---and
doesn't break AST invariants.
pattern matches. In the case of an 'if let' with an explicit type, produce a
Taylor'd diagnostic that rewrites the condition to the right type.
This wraps up:
<rdar://problem/27457457> [Type checker] Diagnose unsavory optional injections
- All parts of the compiler now use ‘P1 & P2’ syntax
- The demangler and AST printer wrap the composition in parens if it is
in a metatype lookup
- IRGen mangles compositions differently
- “protocol<>” is now “swift.Any”
- “protocol<_TP1P,_TP1Q>” is now “_TP1P&_TP1Q”
- Tests cases are updated and added to test the new syntax and mangling
This commit defines the ‘Any’ keyword, implements parsing for composing
types with an infix ‘&’, and provides a fixit to convert ‘protocol<>’
- Updated tests & stdlib for new composition syntax
- Provide errors when compositions used in inheritance.
Any is treated as a contextual keyword. The name ‘Any’
is used emit the empty composition type. We have to
stop user declaring top level types spelled ‘Any’ too.
This reverts commit dc24c2bd34.
Turns out Chris fixed the build but when I was looking at the bots, his fix had
not been tested yet, so I thought the tree was still red and was trying to
revert to green.
In the condition expressions of if, while and guard statements we were
throwing away the AST if there was a parse error in the condition, or
the brace statement was missing. This led to poor code-completion for
unresolved members (enums, options sets) because we couldn't find the
parent expression to type-check.
There are a few minor diagnostic changes because we now do more
type-checking of these conditions, particularly if they end up
containing an unused closure.
SR-2001
Avoid calling lookupMemberType() with an existential base
altogether.
With the previous resolveTypeInContext() patch, a compiler_crasher
regressed and hit this, because the behavior of lookupMemberType()
changed to return nullptr in fewer cases.
along with recent policy changes:
- For expression types that are not specifically handled, make sure to
produce a general "unused value" warning, catching a bunch of unused
values in the testsuite.
- For unused operator results, diagnose them as uses of the operator
instead of "calls".
- For calls, mutter the type of the result for greater specificity.
- For initializers, mutter the type of the initialized value.
- Look through OpenExistentialExpr's so we can handle protocol member
references propertly.
- Look through several other expressions so we handle @discardableResult
better.
as a failure to convert the individual operand, since the operator
is likely conceptually generic in some way and the choice of any
specific overload is probably arbitrary.
Since we now fall back to a better-informed diagnostics point, take
advantage of this to generate a specialized diagnostic when trying to
compare values of function type with ===.
Fixes rdar://25666129.
This reverts commit 073f427942,
i.e. it reapplies 35ba809fd0 with a
test fix to expect an extra note in one place.
as a failure to convert the individual operand, since the operator
is likely conceptually generic in some way and the choice of any
specific overload is probably arbitrary.
Since we now fall back to a better-informed diagnostics point, take
advantage of this to generate a specialized diagnostic when trying to
compare values of function type with ===.
Fixes rdar://25666129.
It is a common point of confusion that code like:
switch value {
case .Foo, .Bar where someNumber != 100:
Only applies the where clause to the second pattern, not every pattern in the case.
Resolve this by warning about the ambiguity, providing two notes (with fixits) that
resolve the issue in different ways:
t.swift:25:17: warning: 'where' only applies to the second pattern match in this case
case .Foo, .Bar where someNumber != 100:
~~~~ ^ ~~~~~~~~~~~~~~~~~
t.swift:25:12: note: disambiguate by adding a line break between them if this is desired
case .Foo, .Bar where someNumber != 100:
^
t.swift:25:6: note: duplicate the 'where' on both patterns to check both patterns
case .Foo, .Bar where someNumber != 100:
^~~~
where someNumber != 100
Parser now accepts multiple patterns in switch cases that contain variables.
Every pattern must contain the same variable names, but can be in arbitrary
positions. New error for variable that doesn't exist in all patterns.
Sema now checks cases with multiple patterns that each occurence of a variable
name is bound to the same type. New error for unexpected types.
SILGen now shares basic blocks for switch cases that contain multiple
patterns. That BB takes incoming arguments from each applicable pattern match
emission with the specific var decls for the pattern that matched.
Added tests for all three of these, and some simple IDE completion
sanity tests.