For generic multi-payload enums, we would proceed down the
dynamic layout path without checking for a builtin descriptor.
As a result Set and Dictionary were always reported as being
9 bytes in size and not 8. Oops...
Fixes <rdar://problem/30066015>.
There were a few problems here with subclasses of Objective-C classes.
Use the InstanceStart field from rodata to correctly lay out instance
variables, and verify the results match with dynamic and static layout.
Better fix for <rdar://problem/27932061>.
Some of these are kinda dubious, but I think this would be better
addressed as part of eager bridging, which will invalidate the concept
most of these are checking for.
All unoptimized tests should now pass when Swift is built with
'build-script -- --swift-stdlib-enable-resilience=1'.
There are still some issues when the tests themselves are built
with optimizations via 'check-swift-validation-optimize'.
Fixes <rdar://problem/28409189>.
The approach here is to split this into two cases:
- If all case payloads have a fixed size, spare bits may be
potentially used to differentiate between cases, and the
remote reflection library does not have enough information to
compute the layout itself.
However, the total size must be fixed, so IRGen just emits a
builtin type descriptor (which I need to rename to 'fixed type
descriptor' since these are also used for imported value types,
and now, certain enums).
- If at least one case has a size that depends on a generic
parameter or is a resilient type, IRGen does not know the size,
but this means fancy tricks with spare bits cannot be used either.
The remote reflection library uses the same approach as the
runtime, basically taking the maximum of the payload size and
alignment, and adding a tag byte.
As with single-payload enums, we produce a new kind of
RecordTypeInfo, this time with a field for every enum case.
All cases start at offset zero (but of course this might change,
if for example we put the enum tag before the address point).
Also, just as with single-payload enums, there is no remote
'project case index' operation on ReflectionContext yet.
So the the main benefit from this change is that we don't entirely
give up when doing layout of class instances containing enums;
however, tools still cannot look inside the enum values themselves,
except in the simplest cases involving optionals.
Notably, the remote reflection library finally understands all
of the standard library's collection types -- Array, Character,
Dictionary, Set, and String.
Attempt to lay out single-payload enums, using knowledge of extra
inhabitants where possible.
- The extra inhabitants of an aggregate are the extra inhabitants of
the first field. If the first field is empty, there are no extra
inhabitants, and subsequent fields do not affect anything.
- Function pointers and metatypes have different extra inhabitants
than Builtin.RawPointer, so have IRGen emit distinct builtin type
descriptors for those.
- Opaque existentials do not have extra inhabitants.
- Weak references do not have extra inhabitants.
Also, fix IRGen to emit more accurate enum reflection metadata in
these two cases:
- We now record whether enum cases are indirect or not. An indirect
case is the same as a payload case with Builtin.NativeObject.
- We now record whether a case is empty or not using the same logic
as the rest of IRGen. Previously, we would incorrectly emit a
payload type for a case with a payload that is an empty struct,
for example.
At this point we don't have a way to get the currently inhabited
enum case from a value. However, this is still an improvement because
we can still reflect other fields of aggregates containing enums,
instead of just giving up.
Finally make some methods on TypeCoverter private, and use 'friend'
to allow them to be accessed from other internal classes, making the
public API simpler.
Prevent the optimizer from eliminating alloc_box instructions
in box_descriptors.sil by returning the boxes, and inhibit
literal capture propagation in functions.swift.
Fixes <rdar://problem/26561954>.
@slava_pestov recently folded in @objc classes when building class field
descriptors - we just need to update the switch when considering records
for converting TypeRefs to TypeInfos.
rdar://problem/26594130
When we encounter a protocol typeref, we have to know if its @objc,
class-bound, or opaque, so make sure we provide the necessary
information when imported protocols are referenced.
Previously we would emit both a builtin descriptor and field
descriptor for imported classes, but we only need the latter.
Untangle some code and fix a crash with imported Objective-C
generics in the process.
Fixes <rdar://problem/26498484>.
We were recovering metadata from generic boxes by reading
the instantiated payload metadata from the box's metadata,
but this approach doesn't work for fixed-size boxes, whose
metadata does not store the payload metadata at all.
Instead, emit a capture descriptor with no metadata sources
and a single capture, using the lowered AST type appearing
in the alloc_box instruction that emitted the box.
Since box metadata is shared by all POD types of the same
size, and all single-retainable pointer payloads, the
AST type might not accurately reflect what is actually in
the box.
However, this type is *layout compatible* with the box
payload, at least enough to know where the retainable
pointers are, because after all IRGen uses this type to
synthesize the destructor.
Fixes <rdar://problem/26314060>.
Child processes were exiting too early before the parent has a chance
to read a null pointer from the child, indicating that there are no
more instances to reflect. This wasn't a problem on OS X because the
I/O latency is so small compared to the iOS simulator, where the
problem would come up under heavy load. This makes the end-to-end
remote mirror tests deterministic again.
rdar://problem/26230879
There is an issue with writing to pipes under heavy load in the iOS
simulator but is intermittent. Disabling the tests there while I
investigate.
rdar://problem/26230879
Without this, offsets of captures in closure contexts may be
incorrect if there is a non-empty necessary bindings structure
at the front.
rdar://problem/26312900
Also add end-to-end tests for this finally, and fix a bug in
the SwiftReflectionTest library where we would give up on an
module completely if it did not have a field metadata section.
This is of course wrong if the module defines closures but
not nominal types.
Implement the ReflectionContext's implementation of:
swift_reflection_projectExistential.
First, we get the type info of the existential typeref - it should be a
record type info. If it's a class existential, it has trivial layout:
the first word is a pointer to the class instance. Otherwise, if the
value fits in the 3-word buffer of the existential container, it
trivially is also at the start of the container. Otherwise, the value is
off in a heap box somewhere, but the first word of the container is a
pointer to that box.