Since that's somewhat expensive, allow the generation of meaningful
IR value names to be efficiently controlled in IRGen. By default,
enable meaningful value names only when generating .ll output.
I considered giving protocol witness tables the name T:Protocol
instead of T.Protocol, but decided that I didn't want to update that
many test cases.
Finishes up https://bugs.swift.org/browse/SR-280. At this point, nothing
should be passing O(N) arguments on the command line, where N is the
number of input source files, unless N is small.
(There are other inputs which are passed through to subtools, and these
are not put into filelists. That's fine.)
With this, we're out of the business of passing large numbers of input
files on the command line to the frontend, which means we no longer
overflow argv with a mere 1100 input files under whole-module optimization.
In order to make sure this doesn't happen again, I'd like to also get
this working for
- swiftmodule inputs to the merge-module build phase
- /output/ files for multithreading single-frontend builds (WMO)
- object file inputs to the linker on OS X (response files for binutils
ld have different quoting rules)
Part 3 of https://bugs.swift.org/browse/SR-280.
This times each phase of compilation, so you can see where time is being
spent. This doesn't cover all of compilation, but does get all the major
work being done.
Note that these times are non-overlapping, and should stay that way.
If we add more timers, they should go in a different timer group, so we
don't end up double-counting.
Based on a patch by @cwillmor---thanks, Chris!
Example output, from an -Onone build using a debug compiler:
===-------------------------------------------------------------------------===
Swift compilation
===-------------------------------------------------------------------------===
Total Execution Time: 8.7215 seconds (8.7779 wall clock)
---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Name ---
2.6670 ( 30.8%) 0.0180 ( 25.3%) 2.6850 ( 30.8%) 2.7064 ( 30.8%) Type checking / Semantic analysis
1.9381 ( 22.4%) 0.0034 ( 4.8%) 1.9415 ( 22.3%) 1.9422 ( 22.1%) AST verification
1.0746 ( 12.4%) 0.0089 ( 12.5%) 1.0834 ( 12.4%) 1.0837 ( 12.3%) SILGen
0.8468 ( 9.8%) 0.0171 ( 24.0%) 0.8638 ( 9.9%) 0.8885 ( 10.1%) IRGen
0.6595 ( 7.6%) 0.0142 ( 20.0%) 0.6737 ( 7.7%) 0.6739 ( 7.7%) LLVM output
0.6449 ( 7.5%) 0.0019 ( 2.6%) 0.6468 ( 7.4%) 0.6469 ( 7.4%) SIL verification (pre-optimization)
0.3505 ( 4.1%) 0.0023 ( 3.2%) 0.3528 ( 4.0%) 0.3530 ( 4.0%) SIL optimization
0.2632 ( 3.0%) 0.0005 ( 0.7%) 0.2637 ( 3.0%) 0.2639 ( 3.0%) SIL verification (post-optimization)
0.0718 ( 0.8%) 0.0021 ( 3.0%) 0.0739 ( 0.8%) 0.0804 ( 0.9%) Parsing
0.0618 ( 0.7%) 0.0010 ( 1.4%) 0.0628 ( 0.7%) 0.0628 ( 0.7%) LLVM optimization
0.0484 ( 0.6%) 0.0011 ( 1.5%) 0.0495 ( 0.6%) 0.0495 ( 0.6%) Serialization (swiftmodule)
0.0240 ( 0.3%) 0.0006 ( 0.9%) 0.0246 ( 0.3%) 0.0267 ( 0.3%) Serialization (swiftdoc)
0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) 0.0000 ( 0.0%) Name binding
8.6505 (100.0%) 0.0710 (100.0%) 8.7215 (100.0%) 8.7779 (100.0%) Total
We've already got -enable-resilience and @_fixed_layout to compare
IRGen differences when lowering super_method instructions, so nuke
the -force-resilient-super-dispatch testing flag. While
we're at it, consolidate the super tests a bit.
We only need to indirectly load the superclass's metadata when the
superclass is resilient. For example, we may be calling a super method
inside an extension of a class we don't own. Otherwise, we can
immediately load the statically known superclass.
Adds a testing flag to force resilient super dispatch, since the
IRGen module resilience checks aren't fully implemented yet.
SIL -> IR tests added.
rdar://problem/22749732
Also fixes rdar://problem/23884670
We decided not to support "implicit" properties, where we import
getter/setter pairs as properties. Rather, we only import a property
when there is an explicit "@property" in Objective-C. Remove the flag
and supporting code for implicit properties.
Use the `super_method` instruction for non-final `func` and `class func`
declarations in native Swift classes. Previously, we would always emit
a static `function_ref` for these, which prevents resilient dynamic
dispatch.
This is hidden behind a -use-native-super-dispatch flag while I
survey the effects on devirtualization and stack promotion. When
that's figured out, I'll add more tests and update test cases that
still assume static dispatch.
rdar://problem/22749732
A fixed layout type is one about which the compiler is allowed to
make certain assumptions across resilience domains. The assumptions
will be documented elsewhere, but for the purposes of this patch
series, they will include:
- the size of the type
- offsets of stored properties
- whether accessed properties are stored or computed
When -enable-resilience is passed to the frontend, all types become
resilient unless annotated with the @fixed_layout attribute.
So far, the @fixed_layout attribute only comes into play in SIL type
lowering of structs and enums, which now become address-only unless
they are @fixed_layout. For now, @fixed_layout is also allowed on
classes, but has no effect. In the future, support for less resilient
type lowering within a single resilience domain will be added, with
appropriate loads and stores in function prologs and epilogs.
Resilience is not enabled by default, which gives all types fixed
layout and matches the behavior of the compiler today. Since
we do not want the -enable-resilience flag to change the behavior
of existing compiled modules, only the currently-compiling module,
Sema adds the @fixed_layout flag to all declarations when the flag
is off. To reduce the size of .swiftmodule files, this could become
a flag on the module itself in the future.
The reasoning behind this is that the usual case is building
applications and private frameworks, where there is no need to make
anything resilient.
For the standard library, we can start out with resilience disabled,
while perfoming an audit adding @fixed_layout annotations in the
right places. Once the implementation is robust enough we can then
build the standard library with resilience enabled.
Revert "Fix complete_decl_attribute test for @fixed_layout"
Revert "Sema: non-@objc private stored properties do not need accessors"
Revert "Sema: Access stored properties of resilient structs through accessors"
Revert "Strawman @fixed_layout attribute and -{enable,disable}-resilience flags"
This reverts commit c91c6a789e.
This reverts commit 693d3d339f.
This reverts commit 085f88f616.
This reverts commit 5d99dc9bb8.
A fixed layout type is one about which the compiler is allowed to
make certain assumptions across resilience domains. The assumptions
will be documented elsewhere, but for the purposes of this patch
series, they will include:
- the size of the type
- offsets of stored properties
- whether accessed properties are stored or computed
When -enable-resilience is passed to the frontend, all types become
resilient unless annotated with the @fixed_layout attribute.
So far, the @fixed_layout attribute only comes into play in SIL type
lowering of structs and enums, which now become address-only unless
they are @fixed_layout. For now, @fixed_layout is also allowed on
classes, but has no effect. In the future, support for less resilient
type lowering within a single resilience domain will be added, with
appropriate loads and stores in function prologs and epilogs.
Resilience is not enabled by default, which gives all types fixed
layout and matches the behavior of the compiler today. Since
we do not want the -enable-resilience flag to change the behavior
of existing compiled modules, only the currently-compiling module,
Sema adds the @fixed_layout flag to all declarations when the flag
is off. To reduce the size of .swiftmodule files, this could become
a flag on the module itself in the future.
The reasoning behind this is that the usual case is building
applications and private frameworks, where there is no need to make
anything resilient.
For the standard library, we can start out with resilience disabled,
while perfoming an audit adding @fixed_layout annotations in the
right places. Once the implementation is robust enough we can then
build the standard library with resilience enabled.
This means: handling of alloc_ref [stack].
It can be configured with two new options. See Option/FrontendOptions.td.
As the [stack] attribute is not generated yet, there should be NFC.
Swift SVN r32929
My temporary hackery around inferring default arguments from imported
APIs was too horrible. Make it slightly more sane by:
1) Actually marking these as default arguments in the type system,
rather than doing everything outside of the type system. This is a
step closer to what we would really do, if we go in this
direction. Put it behind the new -frontend flag
-enable-infer-default-arguments.
2) Only inferring a default argument from option sets and from
explicitly "nullable" parameters, as stated in the (Objective-)C API
or API notes. This eliminates a pile of spurious, non-sensical "=
nil"'s in the resulting output.
Note that there is one ugly tweak to the overloading rules to prefer
declarations with fewer defaulted arguments. This is a bad
implementation of what is probably a reasonable rule (prefer to bind
fewer default arguments), which intentionally only kicks in when we're
dealing with imported APIs that have default arguments.
Swift SVN r32078
The new option -Womit-needless-words finds places where names are
redundant with type information, producing warnings and Fix-Its to
shorten the names. Part of rdar://problem/22232287, to help bring
the same heuristics we're applying in the Clang importer to the user's
Swift code.
Swift SVN r31234
The -enable-omit-needless-words option attempts to omit needless words
from method names imported from Clang. Broadly speaking, a word is
needless if it merely restates the type of the corresponding parameter,
using reverse camel-case matching of the type name to the
function/parameter name. The word "With" is also considered needless
if whether follows it is needless, e.g.,
func copyWithZone(zone: NSZone)
gets reduced to
func copy(zone: NSZone)
because "Zone" merely restates type information and the remaining,
trailing "With" is also needless.
There are some special type naming rules for builtin Objective-C types,
e.g.,
id -> "Object"
SEL -> "Selector"
Block pointer types -> "Block"
as well as some very-Cocoa-specific matching rules, e.g., the type
"IndexSet" matches the name "Indexes" or "Indices".
Expect a lot of churn with these heuristics; this is part of
rdar://problem/22232287.
Swift SVN r31178
...and always serialize -working-directory for Clang. (But allow it to be
overridden by a later -Xcc -working-directory.)
Not having this has caused plenty of headaches for the debugger, which is the
primary client of this information. We can still get into bad situations with
search paths that don't exist at all (say, when a built framework is transferred
to another computer), but at least we won't fall over in multi-project workspaces.
This isn't an actual command-line option for a few reasons:
- SourceKit is still using frontend options directly, and they'll need something
like this to fix rdar://problem/21912068.
- We might want to be more formal about passing this to Clang.
- I don't actually like the existence of such an option for users.
We can revisit this later if the scales tip. Fixing the debugging issue is the
priority.
rdar://problem/21857902
Swift SVN r30500
Compute the hash of all interface tokens when parsing; write the
interface hash to the swiftdeps file, or if the -dump-interface-hash
option is passed to the frontend. This hash will be used in incremental
mode to determine whether a file's interface has changed, and therefore
whether dependent files need to be rebuilt in response to the change.
Committed on ChrisW's behalf while he gets his setup unborked.
rdar://problem/15352929
Swift SVN r30477
This should have no functionality change, but is supposed to keep us from
accidentally relying on the "full" Clang importer when in a backend job.
I tested it by archiving a little iOS app from a developer.
Unfortunately, part of the motivation here was that we'd get error messages when
we pass something Clang doesn't like, and that doesn't seem to be happening.
rdar://problem/21389553
Swift SVN r30407
The value is set based on the -O command-line option. It is generally useful if SIL optimization passes can check the current optimization level.
A couple of subsequent commits are going to make use of this information.
Swift SVN r29653
The test that it's guarding is cheap enough to do all the time, and we
don't have any interesting configurations where it's not set any more.
Swift SVN r29442
This frontend option allows one to turn off autolinking to the
specified framework. This general capability is motivated by
rdar://problem/21246363, where we need to turn off some autolinking in
our overlays due to internal vs. public SDK differences.
Swift SVN r29393
I was always confused by the inconsistency of -sil-print-all and the other -sil-print options.
So I thought it would be a good idea to make -sil-print-all also an llvm option.
Together with some other internal options which are only used in the pass manager.
Swift SVN r29365
The last remaining case was apparently @objc generic classes, which
seem to work now.
Also nuke the IRGen/unimplemented_objc_generic_class.swift test,
this is now implemented and we have other tests that test this
functionality.
Swift SVN r29260