Specifically before this PR, if a caller did not customize a specific callback
of InstModCallbacks, we would store a static default std::function into
InstModCallbacks. This means that we always would have an indirect jump. That is
unfortunate since this code is often called in loops.
In this PR, I eliminate this problem by:
1. I made all of the actual callback std::function in InstModCallback private
and gave them a "Func" postfix (e.x.: deleteInst -> deleteInstFunc).
2. I created public methods with the old callback names to actually call the
callbacks. This ensured that as long as we are not escaping callbacks from
InstModCallback, this PR would not result in the need for any source changes
since we are changing a call of a std::function field to a call to a method.
3. I changed all of the places that were escaping inst mod's callbacks to take
an InstModCallback. We shouldn't be doing that anyway.
4. I changed the default value of each callback in InstModCallbacks to be a
nullptr and changed the public helper methods to check if a callback is
null. If the callback is not null, it is called, otherwise the getter falls
back to an inline default implementation of the operation.
All together this means that the cost of a plain InstModCallback is reduced and
one pays an indirect function cost price as one customizes it further which is
better scalability.
P.S. as a little extra thing, I added a madeChange field onto the
InstModCallback. Now that we have the helpers calling the callbacks, I can
easily insert instrumentation like this, allowing for users to pass in
InstModCallback and see if anything was RAUWed without needing to specify a
callback.
It's against the principles of pass design to check the driver mode
within the pass. A pass always needs to do the same thing regardless
of where it runs in the pass pipeline. It also needs to be possible to
test passes in isolation.
Now that OperandOwnership determines the operand constraints, it
doesn't make sense to distinguish between Borrow and NestedBorrow at
this level. We want these uses to automatically convert between the
nested/non-nested state as the operand's ownership changes. The use
does not need to impose any constraint on the ownership of the
incoming value.
For algorithms that need to distinguish nested borrows, it's still
trivial to do so.
A NonUse operand does not use the value itself, so it ignores
ownership and does not require liveness. This is for operands that
represent dependence on a type but are not actually passed the value
of that type (e.g. they may refer an open_existential). This could be
used for other dependence-only operands in the future.
A TrivialUse operand has undefined ownership semantics aside from
requiring liveness. Therefore it is only legal to pass the use a value
with ownership None (a trivial value). Contrast this with things like
InstantaneousUse or BitwiseEscape, which just don't care about
ownership (i.e. they have no ownership semantics.
All of the explicitly listed operations in this category require
trivially typed operands. So the meaning is obvious to anyone
adding SIL operations and updating OperandOwnership.cpp, without
needing to decifer the value ownership kinds.
The `try await` ordering is both easier to read and indicates the order
of operations better, because the suspension point occurs first and
then one can observe a thrown error.
Other than simplifying some code, the big improvement here is
that we 'freeze' the reference dependencies for a request down
to a simple vector. We only use a DenseSet to store dependencies
of active requests.
StableAddressConcurrentReadableHashMap::getOrInsert had a race condition in the first lookup, where the snapshot was destroyed before the pointer was extracted from the returned wrapper. Fix this by creating the snapshot outside the if so that it stays alive.
rdar://problem/71932487
[sil] Eliminate a confusing optional method result by changing type dependent operands to have OwnershipKind::None instead of returning Optional::None from Operand::getOperandOwnership().
This bare-bones utility will be the basis for
CanonicalizeOSSALifetime. It is maximally flexible and can be adopted
by any analysis that needs SSA-based liveness expressed in terms of
the live blocks. It's meant to be layered underneath various
higher-level analyses.
We could consider revamping ValueLifetimeAnalysis and layering it on
top of this. If PrunedLiveness is adopted widely enough, we can
combine it with a block numbering analysis so we can micro-optimize
the internal data structures.
Combine the wasExpanded flag with the parent pointer, and remove
the haveAddedCleanup flag since it's no longer necessary now that
"re-expansion" is gone.
This doesn't really fit the request evaluator model since the
result of evaluating the request is the new insertion point,
but we don't have a way to get the insertion point of an
already-expanded scope.
Instead, let's change the callers of the now-removed
expandAndBeCurrentDetectingRecursion() to instead call
expandAndBeCurrent(), while checking first if the scope was
already expanded.
Also, set the expanded flag before calling expandSpecifically()
from inside expandAndBeCurrent(), to ensure that re-entrant
calls to expandAndBeCurrent() are flagged by the existing
assertion there.
Finally, replace a couple of existing counters, and the
now-gone request counter with a single ASTScopeExpansions
counter to track expansions.
Clarify which uses are allowed to take Unowned values. Add enforcement
to ensure that Unowned values are not passed to other uses.
Operations that can take unowned are:
- copy_value
- apply/return @unowned argument
- aggregates (struct, tuple, destructure, phi)
- forwarding operations that are arbitrary type casts
Unowned values are currently borrowed within ObjC deinitializers
materialized by the Swift compiler. This will be banned as soon as
SILGen is fixed.
This patch cleans up how we emit the errors for disallowing the
properties and methods of an actor to be applied to the protocol
conformance. Rather than having multiple error messages for each case,
we keep one error message saying that the actor-isolated
method/variable/what-have-you cannot be used to satisfy a protocol
requirement, then allow multiple notes with fix-its to allow the
programmer to choose what they want to do. The notes have a better
description of what each option does.