In debug configurations, fatal error messages include file & line number information. This update presents this information in a format matching the diagnostic conventions used by the compiler, which can be a slight productivity boost.
Code compiled with optimizations enabled (which is most production code) does not output this information, so it isn’t affected by this change.
Original format:
Fatal error: A suffusion of yellow: file calc.swift, line 5
New format:
calc.swift:5: Fatal error: A suffusion of yellow
Resolves rdar://68484891
Previously, overflow and underflow both caused this to return `nil`, which causes several problems:
* It does not distinguish between a large but valid input and a malformed input. `Float("3.402824e+38")` is perfectly well-formed but returns nil
* It differs from how the compiler handles literals. As a result, `Float(3.402824e+38)` is very different from `Float("3.402824e+38")`
* It's inconsistent with Foundation Scanner()
* It's inconsistent with other programming languages
This is exactly the same as #25313
Fixes rdar://problem/36990878
Most SwiftShims were put in the swift namespace in C++ mode which broke certain things when importing them in a swift file in C++ mode. This was OK when they were only imported as part of the swift runtime but, now they are used in C++ mode both in the swift runtime and when C++ interop is enabled.
This broke when C++ interop was enabled because the `Swift` module contains references to symbols in the SwiftShims headers which are built without C++ interop enabled (no "swift" namespace). But, when C++ interop is enabled, the SwiftShims headers would put everything in the swift namespace meaning the symbols couldn't be found in the global namespace. Then, the compiler would error when trying to deserialize the Swift module.
Currently, _swift_stdlib_strtoX_clocale_impl is present here twice: one
general definition for most platforms that wraps the standard strto*
functions, and another general definition with a slightly different
implementation for Cygwin, Haiku, and Windows, using stringstreams to
achieve a similar result. Furthermore, for Windows, the stringstream
implementation isn't even used but specialized away.
Firstly: the stringstream implementation is slightly broken, since it
causes some of the unit tests to fail; secondly, there is an awful lot
of repetition here that is ripe for simplification.
Instead of duplicating twice and using template specialization to induce
platform-specific behavior, we massage the stringstream implementation
for Cygwin and Haiku into something that looks like a standard strto*
function.
Now we have one definition (for each type) of swift_strto*_l. By
default, the _swift_stdlib_strto*_clocale stubs will refer to strto*_l,
and platforms withing to make use of the swift_strto*_l stubs can make
the necessary preprocessor definitions to utilize them.
Instead of putting the stubs alongside the redefinitions in each platform
preprocessor section, split these out, in anticipation for consolidation
in the next commit.
Here the template specializations can be adapted to a strto* wrapper, for
use with the general function-pointer implementation of
_swift_stdlib_strtoX_clocale_impl.
The template defined for Cygwin and friends does not handle failure cases
properly so the NumericParsing unit test fails. To get the correct test
behavior, we need to use an implementation such as like in the Windows
specializations or the non-Cygwin implementation that takes a function
pointer.
However, adding additional specializations would be too wordy, and
OpenBSD doesn't have locale-dependent definitions of the relevant strto*
functions. We could add a specialization for a two-argument function
pointer, but that becomes too repetitive.
Instead, implement a few stubs and use the preprocessor, a la the
implementation for Android.
There are a few environment variables used to enable debugging options in the
runtime, and we'll likely add more over time. These are implemented with
scattered getenv() calls at the point of use. This is inefficient, as most/all
OSes have to do a linear scan of the environment for each call. It's also not
discoverable, since the only way to find these variables is to inspect the
source.
This commit places all of these variables in a central location.
stdlib/public/runtime/EnvironmentVariables.def defines all of the debug
variables including their name, type, default value, and a help string. On OSes
which make an `environ` array available, the entire array is scanned in a single
pass the first time any debug variable is requested. By quickly rejecting
variables that do not start with `SWIFT_`, we optimize for the common case where
no debug variables are set. We also have a fallback to repeated `getenv()` calls
when a full scan is not possible.
Setting `SWIFT_HELP=YES` will print out all available debug variables along with
a brief description of what they do.
This adds a new copy of LLVMSupport into the runtime. This is the final
step before changing the inline namespace for the runtime support. This
will allow us to avoid the ODR violations from the header definitions of
LLVMSupport.
LLVMSupport forked at: 22492eead218ec91d349c8c50439880fbeacf2b7
Changes made to LLVMSupport from that revision:
process.inc forward declares `_beginthreadex` due to compilation issues due to custom flag handling
API changes required that we alter the `Deallocate` routine to account
for the alignment.
This is a temporary state, meant to simplify the process. We do not use
the entire LLVMSupport library and there is no value in keeping the
entire library. Subsequent commits will prune the library to the needs
for the runtime.
Rather than using the forward declaration for the LLVMSupport types,
expect to be able to use the full declaration. Because these are
references in the implementation, there is no reason to use a forward
declaration as the full types need to be declared for use. The LLVM
headers will provide the declaration and definition for the types. This
is motivated by the desire to ensure that the LLVMSupport symbols are
properly namespaced to avoid ODR violations in the runtime.
This reduces the dependency on `LLVMSupport`. This is the first step
towards helping move towards a local fork of the LLVM ADT to ensure that
static linking of the Swift runtime and core library does not result in
ODR violations.
This reverts commit 5fd6e98b2f, reversing
changes made to 3aee49d9d0.
Revert "XFAIL test/Interpreter/metadata_access.swift on arm64e"
This reverts commit 8fe216b004.
Revert "XFAIl test on os stdlib bots"
This reverts commit aea5fa4842.
Extend SwiftDtoa to provide optimal formatting for Float16 and use that for `Float16.description` and `Float16.debugDescription`.
Notes on signaling NaNs: LLVM's Float16 support passes Float16s on x86
by legalizing to Float32. This works well for most purposes but incidentally
loses the signaling marker from any NaN (because it's a conversion as far
as the hardware is concerned), with a side effect that the print code never
actually sees a true sNaN. This is similar to what happens with Float and
Double on i386 backends. The earlier code here tried to detect sNaN in a
different way, but that approach isn't guaranteed to work so we decided to
make this code use the correct detection logic -- sNaN printing will just be
broken until we can get a better argument passing convention.
Resolves rdar://61414101
These should hopefully all be uncontroversial, minimal changes to deal
with progressing the build to completion on OpenBSD or addressing minor
portability issues. This is not the full set of changes to get a
successful build; other portability issues will be addressed in future
commits.
Most of this is just adding the relevant clauses to the ifdefs, but of
note in this commit:
* StdlibUnittest.swift: the default conditional in _getOSVersion assumes
an Apple platform, therefore the explicit conditional and the relevant
enums need filling out. The default conditional should be #error, but
we'll fix this in a different commit.
* tgmath.swift.gyb: inexplicably, OpenBSD is missing just lgammal_r.
Tests are updated correspondingly.
* ThreadLocalStorage.h: we use the pthread implementation, so it
seems we should typedef __swift_thread_key_t as pthread_key_t.
However, that's also a tweak for another commit.
To make it possible to change the implementation of
_stdlib_isOSVersionAtLeast(), remove the @inlinable attribute from it.
Since it is currently inlinable and calls the helper function
_swift_stdlib_operatingSystemVersion(), we’ll have to keep the
helper around as ABI.
This change causes a minor pessimization where the LLVM optimizer can no
longer reason that, for example, a successful check for 10.12 availability
means that a later check for 10.11 will always succeed. I don't expect this
pessimization to be a problem, but if needed we could write a custom SIL
optimizer pass to claw back the performance.
<rdar://problem/59447474>
It is causing bots to fail.
* Revert "The __has_include(<os/system_version.h>) branch here wasn't quite right, we'll just use the dlsym one for now"
This reverts commit f824922456.
* Revert "Remove stdlib and runtime dependencies on Foundation and CF"
This reverts commit 3fe46e3f16.
rdar://54709269