Map the lifetime dependencies described in terms of the formal AST-level parameters
to the correct parameter(s) in the lowered SIL function type. There can be 0, 1,
or many SIL parameters per formal parameter because of tuple exploding. Also,
record which dependencies are on addressable parameters (meaning that the dependency
includes not only the value of the parameter, but its specific memory location).
This would make sure that async function types marked as `@execution(caller)`
have correct isolation.
Also defines all of the possible conversions to and from `caller`
isolated function types.
The problem with `is_escaping_closure` was that it didn't consume its operand and therefore reference count checks were unreliable.
For example, copy-propagation could break it.
As this instruction was always used together with an immediately following `destroy_value` of the closure, it makes sense to combine both into a `destroy_not_escaped_closure`.
It
1. checks the reference count and returns true if it is 1
2. consumes and destroys the operand
This is used for synthetic uses like _ = x that do not act as a true use but
instead only suppress unused variable warnings. This patch just adds the
instruction.
Eventually, we can use it to move the unused variable warning from Sema to SIL
slimmming the type checker down a little bit... but for now I am using it so
that other diagnostic passes can have a SIL instruction (with SIL location) so
that we can emit diagnostics on code like _ = x. Today we just do not emit
anything at all for that case so a diagnostic SIL pass would not see any
instruction that it could emit a diagnostic upon. In the next patch of this
series, I am going to add SILGen support to do that.
This attribute makes it so that a parameter of the annotated type, as well as
any type structurally containing that type as a field, becomes passed as
if `@_addressable` if the return value of the function has a dependency on
the parameter. This allows nonescapable values to take interior pointers into
such types.
Right now it is basically a version of nonisolated beyond a few simple cases
like constructors/destructors where we are pretty sure we want to not support
this.
This is part of my bringup strategy for changing nonisolated/unspecified to be
caller isolation inheriting.
I need this today to add the implicit isolated parameter... but I can imagine us
adding more implicit parameters in the future, so it makes sense to formalize it
so it is easier to do in the future.
Extend the module trace format with a field indicating whether a given
module, or any module it depends on, was compiled with strict memory
safety enabled. This separate output from the compiler can be used as
part of an audit to determine what parts of Swift programs are built
with strict memory safety checking enabled.
Protocol conformances have a handful attributes that can apply to them
directly, including @unchecked (for Sendable), @preconcurrency, and
@retroactive. Generalize this into an option set that we carry around,
so it's a bit easier to add them, as well as reworking the
serialization logic to deal with an arbitrary number of such options.
Use this generality to add support for @unsafe conformances, which are
needed when unsafe witnesses are used to conform to safe requirements.
Implement general support for @unsafe conformances, including
producing a single diagnostic per missing @unsafe that provides a
Fix-It and collects together all of the unsafe witnesses as notes.
This attribute will allow you to specify an alternate version of the declaration used for mangling. It will allow minor adjustments to be made to declarations so long as they’re still compatible at the calling convention level, such as refining isolation or sendability, renaming without breaking ABI, etc.
The attribute is behind the experimental feature flag `ABIAttribute`.
Introduce an attribute to allow unsafe code within the annotated
declaration without presenting an unsafe interface to users. This is,
by its nature, and unsafe construct, and is used to document where
unsafe behavior is encapsulated in safe constructs.
There is an optional message that can be used as part of an audit
trail.
When serializing the module interface path of an interface that
is part of the SDK, we serialize relative to the SDK path. During
deserialization we need to know if a path was serialized relative
to the SDK or not. The existing logic assumes any relative path
has been serialized relative to the SDK, which makes it impossible
to compile modules from relative swiftinterface paths that are not
part of the SDK.
Update the swiftmodule file to include an attribute to show if the
path was serialized relative to the SDK or not, which is used
during deserialization to correctly reconstruct the interface path.
Many APIs using nonescapable types would like to vend interior pointers to their
parameter bindings, but this isn't normally always possible because of representation
changes the caller may do around the call, such as moving the value in or out of memory,
bridging or reabstracting it, etc. `@_addressable` forces the corresponding parameter
to be passed indirectly in memory, in its maximally-abstracted representation.
[TODO] If return values have a lifetime dependency on this parameter, the caller must
keep this in-memory representation alive for the duration of the dependent value's
lifetime.
Rename decls are typically derived from the rename strings attached to a
`@available` attributes. It shouldn't be necessary to serialize the cached
rename decls since they can be rederived. The only decls that have rename decls
and don't have reanme strings are synthesized by ClangImporter and don't get
serialized.
I am adding this instruction to express artificially that two non-Sendable
values should be part of the same region. It is meant to be used in cases where
due to unsafe code using Sendable, we stop propagating a non-Sendable dependency
that needs to be made in the same region of a use of said Sendable value. I
included an example in ./docs/SIL.rst of where this comes up with @out results
of continuations.
Add flag `-load-resolved-plugin` to load macro plugin, which provides a
pre-resolved entry into PluginLoader so the plugins can be loaded based
on module name without searching the file system. The option is mainly
intended to be used by explicitly module build and the flag is supplied
by dependency scanner.
Today ParenType is used:
1. As the type of ParenExpr
2. As the payload type of an unlabeled single
associated value enum case (and the type of
ParenPattern).
3. As the type for an `(X)` TypeRepr
For 1, this leads to some odd behavior, e.g the
type of `(5.0 * 5).squareRoot()` is `(Double)`. For
2, we should be checking the arity of the enum case
constructor parameters and the presence of
ParenPattern respectively. Eventually we ought to
consider replacing Paren/TuplePattern with a
PatternList node, similar to ArgumentList.
3 is one case where it could be argued that there's
some utility in preserving the sugar of the type
that the user wrote. However it's really not clear
to me that this is particularly desirable since a
bunch of diagnostic logic is already stripping
ParenTypes. In cases where we care about how the
type was written in source, we really ought to be
consulting the TypeRepr.
It might be unexpected to future users that `-swift-compiler-version`
would produce a version aligned to .swiftinterface instead of one used
to build the .swiftmodule file. To avoid this possible confusion, let's
scope down the version to `-interface-compiler-version` flag and
`SWIFT_INTERFACE_COMPILER_VERSION` option in the module.
`Builtin.FixedArray<let N: Int, T: ~Copyable & ~Escapable>` has the layout of `N` elements of type `T` laid out
sequentially in memory (with the tail padding of every element occupied by the array). This provides a primitive
on which the standard library `Vector` type can be built.
When its operand has coroutine kind `yield_once_2`, a `begin_apply`
instruction produces an additional value representing the storage
allocated by the callee. This storage must be deallocated by a
`dealloc_stack` on every path out of the function. Like any other stack
allocation, it must obey stack discipline.
For now this will only be used for HopToMainActorIfNeeded thunks. I am creating
this now since in the past there has only been one option for creating
thunks... to create the thunk in SILGen using SILGenThunk. This code is hard to
test and there is a lot of it. By using an instruction here we get a few benefits:
1. We decouple SILGen from needing to generate new kinds of thunks. This means
that SILGenThunk does not need to expand to handle more thunks.
2. All thunks implemented via ThunkInst will be easy to test in a decoupled way
with SIL tests.
3. Even though this stabilizes the patient, we still have many thunks in SILGen
and various parts of the compiler. Over time, we can swap to this model,
allowing us to hopefully eventually delete SILGenThunk.
Add function to handle all macro dependencies kinds in the scanner,
including taking care of the macro definitions in the module interface
for its client to use. The change involves:
* Encode the macro definition inside the binary module
* Resolve macro modules in the dependencies scanners, including those
declared inside the dependency modules.
* Propagate the macro defined from the direct dependencies to track
all the potentially available modules inside a module compilation.