When retrieving the full list of semantic attributes for printing, trigger the
HasStorage request to add an implicit `@_hasStorage` attribute if necessary.
Resolves rdar://117768816
To match terminology used elsewhere in the compiler (e.g. "parsed accessor")
rename "original attributes" to "parsed atributes". Additionally, make sure the
attributes returned by `getParsedAttrs()` really are just the parsed ones by
skipping implicit attributes in addition to the ones expanded from macros.
A client shouldn't know about the underlying type of an opaque type
unless it can see the body of the naming decl. Attempting to read it can
lead to accessing a hidden dependency and a compiler crash.
This was protected by a check specific to function decls but var decls
and subscripts were not handled. To support them we have to move this
logic to the writer side where we have access to the full
AbstractStorageDecl and write in the swifmodule whether the underlying
type should be visible outside of the module.
rdar://117607906
We need to avoid triggering semantic attribute requests in TypeCheckAttr
because it happens too early in type checking to trigger some semantic
attribute requests, and we only want to diagnose attributes that were written
in source anyways.
In order to avoid triggering request cycles as `SemanticDeclAttrsRequest` grows
to cover a larger range of implicit attributes, we need a lighter-weight
accessor for just the CustomAttrs that have been expanded from macros.
Introduce `getSemanticCustomAttrs()` and adopt it where `getSemanticAttrs()`
had been previously used to enumerate macro expanded custom attributes.
Conflicts:
- `lib/AST/TypeCheckRequests.cpp` renamed `isMoveOnly` which requires
a static_cast on rebranch because `Optional` is now a `std::optional`.
This implementation has the function execute a request to scan the
inheritance clause of non-protocol nominals for a `~Copyable`. For
protocols, we look in the requirement signature.
This isn't our final state, as the GenericEnvironment needs to be
queried in general to determine of a Type is noncopyable. So for now
checking for a `~Copyable` only makes sense for Decls.
I've renamed the method to `TypeDecl::isNoncopyable`, because the query
doesn't make sense for many other kinds of `ValueDecl`'s beyond the
`TypeDecl`'s. In fact, it looks like no one was relying on that anyway.
Thus, we now have a distinction where in Sema, you ask whether
a `Type` or `TypeDecl` is "Noncopyable". But within SIL, we still
preserve the notion of "move-only" since there is additionally the
move-only type wrapper for types that otherwise support copying.
When comparing a requirement that uses typed throws and uses an
associated type for the thrown error type against a potential witness,
infer the associated type from the thrown error of the
witness---whether explicitly specified, untyped throws (`any Error`),
or non-throwing (`Never`).
`ForeignAsyncConvention.h` and `ForeignErrorConvention.h` must be included in `Decl.h`, because those types are used in an `llvm::Optional` in `Decl.h`.
Conflict in CAS options when
`std::vector<std::string> CacheReplayPrefixMap;` was added.
Conflicts:
include/swift/Frontend/FrontendOptions.h
Resolution: Take both
properties to require actor isolation.
Member initializer expressions are only used in a constructor with
matching actor isolation. If the isolation prohibits the member
initializer from being evaluated synchronously (or propagating required
isolation through closure bodies), then the default value cannot be used
and the member must be explicitly initialized in the constructor.
Member initializer expressions are also used as default arguments for the
memberwise initializer, and the same rules for default argument isolation
apply.
Type checking a default argument expression will compute the required
actor isolation for evaluating that argument value synchronously. Actor
isolation checking is deferred to the caller; it is an error to use a
default argument from across isolation domains.
Currently gated behind -enable-experimental-feature IsolatedDefaultArguments.
Package decls are only printed in interface files if they are inlinable
(@usableFromInline, @inlinable, @_alwaysEmitIntoClient). They could be
referenced by a module outside of its defining module that belong to the same
package determined by the `package-name` flag. However, the flag is only in
.swiftmodule and .private.swiftinterface, thus type checking references of
inlinable package symbols in public interfaces fails due to the missing flag.
Instead of adding the package-name flag to the public interfaces, which
could raise a security concern, this PR grants access to such cases.
Resolves rdar://116142791
Lower the thrown error type into the SIL function type. This requires
very little code because the thrown error type was already modeled as
a SILResultInfo, which carries type information. Note that this
lowering does not yet account for error types that need to passed
indirectly, but we will need to do so for (e.g.) using resilient error
types.
Teach a few places in SIL generation not to assume that thrown types
are always the existential error type, which primarily comes down to
ensuring that rethrow epilogues have the thrown type of the
corresponding function or closure.
Teach throw emission to implicitly box concrete thrown errors in the
error existential when needed to satisfy the throw destination. This
is a temporary solution that helps translate typed throws into untyped
throws, but it should be replaced by a better modeling within the AST
of the points at which thrown errors are converted.
Add the thrown type into the AST representation of function types,
mapping from function type representations and declarations into the
appropriate thrown type. Add tests for serialization, printing, and
basic equivalence of function types that have thrown errors.
Parse typed throw specifiers as `throws(X)` in every place where there
are effects specified, and record the resulting thrown error type in
the AST except the type system. This includes:
* `FunctionTypeRepr`, for the parsed representation of types
* `AbstractFunctionDecl`, for various function-like declarations
* `ClosureExpr`, for closures
* `ArrowExpr`, for parsing of types within expression context
This also introduces some serialization logic for the thrown error
type of function-like declarations, along with an API to extract the
thrown interface type from one of those declarations, although right
now it will either be `Error` or empty.
Function bodies are skipped during typechecking when one of the
-experimental-skip-*-function-bodies flags is passed to the frontend. This was
implemented by setting the "body kind" of an `AbstractFunctionDecl` during decl
checking in `TypeCheckDeclPrimary`. This approach had a couple of issues:
- It is incompatible with skipping function bodies during lazy typechecking,
since the skipping is only evaluated during a phase of eager typechecking.
- It prevents skipped function bodies from being parsed on-demand ("skipped" is
a state that is distinct from "parsed", when they ought to be orthogonal).
This needlessly prevented complete module interfaces from being emitted with
-experimental-skip-all-function-bodies.
Storing the skipped status of a function separately from body kind and
requestifying the determination of whether to skip a function solves these
problems.
Resolves rdar://116020403