We previously shied away from this in order to not /accidentally/
depend on it, but it becomes interesting again with textual
interfaces, which can certainly be read by humans. The cross-file
order is the order of input files, which is at least controllable by
users.
For now, the accessors have been underscored as `_read` and `_modify`.
I'll prepare an evolution proposal for this feature which should allow
us to remove the underscores or, y'know, rename them to `purple` and
`lettuce`.
`_read` accessors do not make any effort yet to avoid copying the
value being yielded. I'll work on it in follow-up patches.
Opaque accesses to properties and subscripts defined with `_modify`
accessors will use an inefficient `materializeForSet` pattern that
materializes the value to a temporary instead of accessing it in-place.
That will be fixed by migrating to `modify` over `materializeForSet`,
which is next up after the `read` optimizations.
SIL ownership verification doesn't pass yet for the test cases here
because of a general fault in SILGen where borrows can outlive their
borrowed value due to being cleaned up on the general cleanup stack
when the borrowed value is cleaned up on the formal-access stack.
Michael, Andy, and I discussed various ways to fix this, but it seems
clear to me that it's not in any way specific to coroutine accesses.
rdar://35399664
This was originally added to support "derived" top-level declarations,
which in practice was just '==' implementations for enums. Now that
those are members, we don't have the notion of derived top-level
declarations anymore, and neither is there anything that would
normally be a cross-reference that we want to force to be serialized
directly.
No functionality change (because this was unused).
The storage kind has been replaced with three separate "impl kinds",
one for each of the basic access kinds (read, write, and read/write).
This makes it far easier to mix-and-match implementations of different
accessors, as well as subtleties like implementing both a setter
and an independent read/write operation.
AccessStrategy has become a bit more explicit about how exactly the
access should be implemented. For example, the accessor-based kinds
now carry the exact accessor intended to be used. Also, I've shifted
responsibilities slightly between AccessStrategy and AccessSemantics
so that AccessSemantics::Ordinary can be used except in the sorts of
semantic-bypasses that accessor synthesis wants. This requires
knowing the correct DC of the access when computing the access strategy;
the upshot is that SILGenFunction now needs a DC.
Accessor synthesis has been reworked so that only the declarations are
built immediately; body synthesis can be safely delayed out of the main
decl-checking path. This caused a large number of ramifications,
especially for lazy properties, and greatly inflated the size of this
patch. That is... really regrettable. The impetus for changing this
was necessity: I needed to rework accessor synthesis to end its reliance
on distinctions like Stored vs. StoredWithTrivialAccessors, and those
fixes were exposing serious re-entrancy problems, and fixing that... well.
Breaking the fixes apart at this point would be a serious endeavor.
We sometimes serialized the “isObjC” state, and sometimes not. When we did serialize it,
we rarely used the bit for anything. Serialize it for all declarations where it makes
sense, and consistently call setIsObjC() with the deserialized value.
If, for whatever reason, a type used in an extension's generic
requirements is missing, just drop the whole extension. This isn't
wonderful recovery, but in practice nothing should be able to use the
extension anyway, since the relevant type in question is missing.
...Okay, that's not quite true; there could, for example, be inlinable
code that references one of these methods. However, that (1) isn't
worse than the behavior for any other inlinable code (which doesn't
yet attempt to recover from missing declarations), and (2) is still a
strict improvement over the current situation, where we will eagerly
abort the compiler trying to load the extension in the first place.
rdar://problem/40956460
Cross-references are identified by their containing module, with the
assumption that two modules will never have the same name. However, an
overlay has the same name as its underlying Clang module, which means
that there can be two declarations with the same name, the same type,
and the same module name. This is the underlying cause of the
'UIEdgeInsetsZero' problem, but it also affects the CloudKit overlay.
By tracking a bit that just says "this came from Clang", we're able
to resolve otherwise ambiguous cross-references.
(Why didn't we do it this way all along? Because if a declaration
moves from Clang to Swift or vice versa, that would break the
cross-reference. But that's only interesting if the swiftmodule format
is meant to be persistent across changing dependencies, and it looks
like we're moving away from that anyway. It's also a little weird for
SerializedModuleLoader to have special cases for Clang, but this isn't
the first.)
Note that I'm not reverting the UIEdgeInsetsZero workaround here; the
end state will have that coming just from UIKit as originally
described.
rdar://problem/40839486
This allows us to filter them out in cases that would otherwise be
ambiguous. The particular prompting situation looks a lot like the
test case: a protocol, plus a forward-declared class with the same
name. (Normally we ignore forward-declared classes, but SourceKit's
module interface generation feature makes dummy ClassDecls for them
instead.)
https://bugs.swift.org/browse/SR-4851
Wire up the request-evaluator with an instance in ASTContext, and
introduce two request kinds: one to retrieve the superclass of a class
declaration, and one to compute the type of an entry in the
inheritance clause.
Teach ClassDecl::getSuperclass() to go through the request-evaluator,
centralizing the logic to compute and extract the superclass
type.
Fixes the crasher from rdar://problem/26498438.
Introduce some metaprogramming of accessors and generally prepare
for storing less-structured accessor lists.
NFC except for a change to the serialization format.
This mirrors how a bridging header is processed when compiling source
files: before any of the imports. This is important for LLDB to
recreate the source environment as closely as possible to how the
compiler does it; in the test case being added involving a non-modular
header file, failure to do so resulted in a deserialization
cross-reference crash.
Note that Serialization still sorts imports, which normal resolution
of imports in source does not do. So we're still not consistent. But
this is less important than handling textual includes (bridging
headers) before modular imports.
rdar://problem/40471329
Ideally `UnboundGenericType` should never be serialized but it is
currently allowed to make generic `typealias` declarations without
specifying generic parameters, so it should be allowed to cross
reference typealias decls in such types as well because `NameAliasType`
can't be used until generic parameters are resolved.
This is only a temporary fix and more comprehensive solution is still
pending here, most likely such declarations should not produce
`UnboundGenericType` but instead should copy generic parameters from
underlying type and produce proper `NameAliasType`.
Resolves: rdar://problem/37384120
This reverts commit bb16ee049d,
reversing changes made to a8d831f5f5.
It's not sufficient to solve the problem, and the choices were to do
something more complicated, or just take a simple brute force
approach. We're going with the latter.