Files
swift-mirror/lib/SILOptimizer/Utils/PartitionUtils.cpp
Michael Gottesman 8745ab00de [rbi] Teach RegionIsolation how to properly error when 'inout sending' params are returned.
We want 'inout sending' parameters to have the semantics that not only are they
disconnected on return from the function but additionally they are guaranteed to
be in their own disconnected region on return. This implies that we must emit
errors when an 'inout sending' parameter or any element that is in the same
region as the current value within an 'inout sending' parameter is
returned. This commit contains a new diagnostic for RegionIsolation that adds
specific logic for detecting and emitting errors in these situations.

To implement this, we introduce 3 new diagnostics with each individual
diagnostic being slightly different to reflect the various ways that this error
can come up in source:

* Returning 'inout sending' directly:

```swift
func returnInOutSendingDirectly(_ x: inout sending NonSendableKlass) -> NonSendableKlass {
  return x // expected-warning {{cannot return 'inout sending' parameter 'x' from global function 'returnInOutSendingDirectly'}}
  // expected-note @-1 {{returning 'x' risks concurrent access since caller assumes that 'x' and the result of global function 'returnInOutSendingDirectly' can be safely sent to different isolation domains}}
}
```

* Returning a value in the same region as an 'inout sending' parameter. E.x.:

```swift
func returnInOutSendingRegionVar(_ x: inout sending NonSendableKlass) -> NonSendableKlass {
  var y = x
  y = x
  return y // expected-warning {{cannot return 'y' from global function 'returnInOutSendingRegionVar'}}
  // expected-note @-1 {{returning 'y' risks concurrent access to 'inout sending' parameter 'x' since the caller assumes that 'x' and the result of global function 'returnInOutSendingRegionVar' can be safely sent to different isolation domains}}
}
```

* Returning the result of a function or computed property that is in the same
region as the 'inout parameter'.

```swift
func returnInOutSendingViaHelper(_ x: inout sending NonSendableKlass) -> NonSendableKlass {
  let y = x
  return useNonSendableKlassAndReturn(y) // expected-warning {{cannot return result of global function 'useNonSendableKlassAndReturn' from global function 'returnInOutSendingViaHelper'}}
  // expected-note @-1 {{returning result of global function 'useNonSendableKlassAndReturn' risks concurrent access to 'inout sending' parameter 'x' since the caller assumes that 'x' and the result of global function 'returnInOutSendingViaHelper' can be safely sent to different isolation domains}}
}
```

Additionally, I had to introduce a specific variant for each of these
diagnostics for cases where due to us being in a method, we are actually in our
caller causing the 'inout sending' parameter to be in the same region as an
actor isolated value:

* Returning 'inout sending' directly:

```swift
extension MyActor {
  func returnInOutSendingDirectly(_ x: inout sending NonSendableKlass) -> NonSendableKlass {
    return x // expected-warning {{cannot return 'inout sending' parameter 'x' from instance method 'returnInOutSendingDirectly'}}
    // expected-note @-1 {{returning 'x' risks concurrent access since caller assumes that 'x' is not actor-isolated and the result of instance method 'returnInOutSendingDirectly' is 'self'-isolated}}
  }
}
```

* Returning a value in the same region as an 'inout sending' parameter. E.x.:

```swift
extension MyActor {
  func returnInOutSendingRegionLet(_ x: inout sending NonSendableKlass) -> NonSendableKlass {
    let y = x
    return y // expected-warning {{cannot return 'y' from instance method 'returnInOutSendingRegionLet'}}
    // expected-note @-1 {{returning 'y' risks concurrent access to 'inout sending' parameter 'x' since the caller assumes that 'x' is not actor-isolated and the result of instance method 'returnInOutSendingRegionLet' is 'self'-isolated}}
  }
}
```

* Returning the result of a function or computed property that is in the same region as the 'inout parameter'.

```swift
extension MyActor {
  func returnInOutSendingViaHelper(_ x: inout sending NonSendableKlass) -> NonSendableKlass {
    let y = x
    return useNonSendableKlassAndReturn(y) // expected-warning {{cannot return result of global function 'useNonSendableKlassAndReturn' from instance method 'returnInOutSendingViaHelper'; this is an error in the Swift 6 language mode}}
    // expected-note @-1 {{returning result of global function 'useNonSendableKlassAndReturn' risks concurrent access to 'inout sending' parameter 'x' since the caller assumes that 'x' is not actor-isolated and the result of instance method 'returnInOutSendingViaHelper' is 'self'-isolated}}
  }
}
```

To implement this, I used two different approaches depending on whether or not
the returned value was generic or not.

* Concrete

In the case where we had a concrete value, I was able to in simple cases emit
diagnostics based off of the values returned by the return inst. In cases where
we phied together results due to multiple results in the same function, we
determine which of the incoming phied values caused the error by grabbing the
exit partition information of each of the incoming value predecessors and seeing
if an InOutSendingAtFunctionExit would emit an error.

* Generic

In the case of generic code, it is a little more interesting since the result is
a value stored in an our parameter instead of being a value directly returned by
a return inst. To work around this, I use PrunedLiveness to determine the last
values stored into the out parameter in the function to avoid having to do a
full dataflow. Then I take the exit blocks where we assign each of those values
and run the same check as we do in the direct phi case to emit the appropriate
error.

rdar://152454571
2025-08-25 14:57:44 -07:00

944 lines
33 KiB
C++

//===--- PartitionUtils.cpp -----------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/PartitionUtils.h"
// We only use this so we can implement print on our type erased errors.
#include "swift/SILOptimizer/Analysis/RegionAnalysis.h"
#include "swift/SILOptimizer/Utils/VariableNameUtils.h"
using namespace swift;
using namespace swift::PartitionPrimitives;
//===----------------------------------------------------------------------===//
// MARK: PartitionOpError
//===----------------------------------------------------------------------===//
void PartitionOpError::UnknownCodePatternError::print(
llvm::raw_ostream &os, RegionAnalysisValueMap &valueMap) const {
os << " Emitting Error. Kind: Unknown Code Pattern Error\n"
<< " Inst: " << *op->getSourceInst();
}
void PartitionOpError::LocalUseAfterSendError::print(
llvm::raw_ostream &os, RegionAnalysisValueMap &valueMap) const {
os << " Emitting Error. Kind: Use After Send\n"
<< " Sending Inst: " << *sendingOp->getUser()
<< " Sending Op Value: " << sendingOp->get()
<< " Require Inst: " << *op->getSourceInst() << " ID: %%"
<< sentElement << "\n"
<< " Rep: " << valueMap.getRepresentativeValue(sentElement)
<< " Sending Op Num: " << sendingOp->getOperandNumber() << '\n';
}
void PartitionOpError::SentNeverSendableError::print(
llvm::raw_ostream &os, RegionAnalysisValueMap &info) const {
os << " Emitting Error. Kind: Sent Non Sendable\n"
<< " ID: %%" << sentElement << "\n"
<< " Rep: " << *info.getRepresentative(sentElement)
<< " Dynamic Isolation Region: ";
isolationRegionInfo.printForOneLineLogging(info.getFunction(), os);
os << '\n';
if (auto isolatedValue = isolationRegionInfo->maybeGetIsolatedValue()) {
os << " Isolated Value: " << isolatedValue;
auto name = VariableNameInferrer::inferName(isolatedValue);
os << " Isolated Value Name: "
<< (name.has_value() ? name->get() : "none") << '\n';
} else {
os << " Isolated Value: none\n";
};
}
void PartitionOpError::AssignNeverSendableIntoSendingResultError::print(
llvm::raw_ostream &os, RegionAnalysisValueMap &valueMap) const {
os << " Emitting Error. Kind: Assign Isolated Into Sending Result!\n"
<< " Assign Inst: " << *op->getSourceInst()
<< " Dest Value: " << *destValue
<< " Dest Element: " << destElement << '\n'
<< " Src Value: " << srcValue
<< " Src Element: " << srcElement << '\n'
<< " Src Rep: " << valueMap.getRepresentativeValue(srcElement)
<< " Src Isolation: " << srcIsolationRegionInfo << '\n';
}
void PartitionOpError::InOutSendingNotInitializedAtExitError::print(
llvm::raw_ostream &os, RegionAnalysisValueMap &valueMap) const {
os << " Emitting Error. Kind: InOut Not Reinitialized At End Of "
"Function\n"
<< " Sending Inst: " << *sendingOp->getUser()
<< " Sending Op Value: " << sendingOp->get()
<< " Require Inst: " << *op->getSourceInst() << " ID: %%"
<< sentElement << "\n"
<< " Rep: " << valueMap.getRepresentativeValue(sentElement)
<< " Sending Op Num: " << sendingOp->getOperandNumber() << '\n';
}
void PartitionOpError::InOutSendingNotDisconnectedAtExitError::print(
llvm::raw_ostream &os, RegionAnalysisValueMap &valueMap) const {
os << " Emitting Error. Kind: InOut Sending ActorIsolated "
"at end of "
"Function Error!\n"
<< " ID: %%" << inoutSendingElement << "\n"
<< " Rep: " << valueMap.getRepresentativeValue(inoutSendingElement)
<< " Dynamic Isolation Region: ";
isolationInfo.printForOneLineLogging(valueMap.getFunction(), os);
os << '\n';
}
void PartitionOpError::NonSendableIsolationCrossingResultError::print(
llvm::raw_ostream &os, RegionAnalysisValueMap &valueMap) const {
os << " Emitting Error. Kind: NonSendableIsolationCrossingResultError\n"
" Inst: "
<< *op->getSourceInst() << " Result ID: %%" << returnValueElement
<< '\n';
}
void PartitionOpError::InOutSendingReturnedError::print(
llvm::raw_ostream &os, RegionAnalysisValueMap &valueMap) const {
os << " Emitting Error. Kind: InOutSendingReturnedError!\n"
<< " ID: %%" << inoutSendingElement << '\n'
<< " Rep: " << valueMap.getRepresentativeValue(inoutSendingElement)
<< " Returned Value ID: %%" << returnedValue << '\n'
<< " Rep: " << valueMap.getRepresentativeValue(returnedValue);
}
//===----------------------------------------------------------------------===//
// MARK: PartitionOp
//===----------------------------------------------------------------------===//
void PartitionOp::print(llvm::raw_ostream &os, bool extraSpace) const {
constexpr static char extraSpaceLiteral[10] = " ";
switch (opKind) {
case PartitionOpKind::Assign: {
os << "assign ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << getOpArg1() << " = %%" << getOpArg2();
break;
}
case PartitionOpKind::AssignFresh:
os << "assign_fresh %%" << getOpArg1();
break;
case PartitionOpKind::Send: {
os << "send ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << getOpArg1();
break;
}
case PartitionOpKind::UndoSend: {
os << "undo_send ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << getOpArg1();
break;
}
case PartitionOpKind::Merge: {
os << "merge ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << getOpArg1() << " with %%" << getOpArg2();
break;
}
case PartitionOpKind::Require: {
os << "require ";
if (getOptions().containsOnly(
PartitionOp::Flag::RequireOfMutableBaseOfSendableValue))
os << "[mutable_base_of_sendable_val] ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << getOpArg1();
break;
}
case PartitionOpKind::UnknownPatternError:
os << "unknown pattern error ";
os << "%%" << getOpArg1();
break;
case PartitionOpKind::InOutSendingAtFunctionExit:
os << "inout_sending_at_function_exit ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << getOpArg1();
break;
case PartitionOpKind::NonSendableIsolationCrossingResult:
os << "nonsendable_isolationcrossing_result ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << getOpArg1();
break;
case PartitionOpKind::AssignFreshAssign:
os << "assign_fresh_assign ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << getOpArg1() << " = %%" << getOpArg2();
break;
}
os << ": " << *getSourceInst();
}
//===----------------------------------------------------------------------===//
// MARK: Partition
//===----------------------------------------------------------------------===//
Partition Partition::singleRegion(SILLocation loc, ArrayRef<Element> indices,
IsolationHistory inputHistory) {
Partition p(inputHistory);
if (!indices.empty()) {
// Lowest element is our region representative and the value that our
// region takes.
Element repElement = *std::min_element(indices.begin(), indices.end());
Region repElementRegion = Region(repElement);
p.freshLabel = Region(repElementRegion + 1);
// Place all of the operations until end of scope into one history
// sequence.
p.pushHistorySequenceBoundary(loc);
// First create a region for repElement. We are going to merge all other
// regions into its region.
p.pushNewElementRegion(repElement);
llvm::SmallVector<Element, 32> nonRepElts;
for (Element index : indices) {
p.elementToRegionMap.insert_or_assign(index, repElementRegion);
if (index != repElement) {
p.pushNewElementRegion(index);
nonRepElts.push_back(index);
}
p.pushMergeElementRegions(repElement, nonRepElts);
}
}
assert(p.is_canonical_correct());
return p;
}
Partition Partition::separateRegions(SILLocation loc, ArrayRef<Element> indices,
IsolationHistory inputHistory) {
Partition p(inputHistory);
if (indices.empty())
return p;
// Place all operations in one history sequence.
p.pushHistorySequenceBoundary(loc);
auto maxIndex = Element(0);
for (Element index : indices) {
p.elementToRegionMap.insert_or_assign(index, Region(index));
p.pushNewElementRegion(index);
maxIndex = Element(std::max(maxIndex, index));
}
p.freshLabel = Region(maxIndex + 1);
assert(p.is_canonical_correct());
return p;
}
void Partition::markSent(Element val, SendingOperandSet *sendingOperandSet) {
// First see if our val is tracked. If it is not tracked, insert it and mark
// its new region as sent.
if (!isTrackingElement(val)) {
elementToRegionMap.insert_or_assign(val, freshLabel);
pushNewElementRegion(val);
regionToSendingOpMap.insert({freshLabel, sendingOperandSet});
freshLabel = Region(freshLabel + 1);
canonical = false;
return;
}
// Otherwise, we already have this value in the map. Try to insert it.
auto iter1 = elementToRegionMap.find(val);
assert(iter1 != elementToRegionMap.end());
auto iter2 = regionToSendingOpMap.insert({iter1->second, sendingOperandSet});
// If we did insert, just return. We were not tracking any state.
if (iter2.second)
return;
// Otherwise, we need to merge the sets.
iter2.first->second = iter2.first->second->merge(sendingOperandSet);
}
bool Partition::undoSend(Element val) {
// First see if our val is tracked. If it is not tracked, insert it.
if (!isTrackingElement(val)) {
elementToRegionMap.insert_or_assign(val, freshLabel);
pushNewElementRegion(val);
freshLabel = Region(freshLabel + 1);
canonical = false;
return true;
}
// Otherwise, we already have this value in the map. Remove it from the
// "sending operand" map.
auto iter1 = elementToRegionMap.find(val);
assert(iter1 != elementToRegionMap.end());
return regionToSendingOpMap.erase(iter1->second);
}
void Partition::trackNewElement(Element newElt, bool updateHistory) {
SWIFT_DEFER { validateRegionToSendingOpMapRegions(); };
// First try to emplace newElt with fresh_label.
auto iter = elementToRegionMap.try_emplace(newElt, freshLabel);
// If we did insert, then we know that the value is completely new. We can
// just update the fresh_label, set canonical to false, and return.
if (iter.second) {
// Since the value is completely new, add a completely new history node to
// the history.
if (updateHistory)
pushNewElementRegion(newElt);
// Increment the fresh label so it remains fresh.
freshLabel = Region(freshLabel + 1);
canonical = false;
return;
}
// Otherwise, we have a bit more work that we need to perform:
//
// 1. We of course need to update iter to point at fresh_label.
//
// 2. We need to see if this value was the last element in its current
// region. If so, then we need to remove the region from the sending op
// map.
//
// This is important to ensure that every region in the sendingOpMap is
// also in elementToRegionMap.
auto oldRegion = iter.first->second;
iter.first->second = freshLabel;
auto getValueFromOtherRegion = [&]() -> std::optional<Element> {
for (auto pair : elementToRegionMap) {
if (pair.second == oldRegion)
return pair.first;
}
return {};
};
if (auto matchingElt = getValueFromOtherRegion()) {
if (updateHistory)
pushRemoveElementFromRegion(*matchingElt, newElt);
} else {
regionToSendingOpMap.erase(oldRegion);
if (updateHistory)
pushRemoveLastElementFromRegion(newElt);
}
if (updateHistory)
pushNewElementRegion(newElt);
// Increment the fresh label so it remains fresh.
freshLabel = Region(freshLabel + 1);
canonical = false;
}
/// Assigns \p oldElt to the region associated with \p newElt.
void Partition::assignElement(Element oldElt, Element newElt,
bool updateHistory) {
// If the old/new elt at the same, just return.
if (oldElt == newElt)
return;
SWIFT_DEFER { validateRegionToSendingOpMapRegions(); };
// First try to emplace oldElt with the newRegion.
auto newRegion = elementToRegionMap.at(newElt);
auto iter = elementToRegionMap.try_emplace(oldElt, newRegion);
// If we did an insert, then we know that oldElt was new to this
// partition. This means that we update our history for a completely new
// value in newElt's region. We also set canonical to false to ensure when
// ever we do a merge/etc, we renumber indices as appropriate.
if (iter.second) {
if (updateHistory) {
pushNewElementRegion(oldElt);
pushMergeElementRegions(newElt, oldElt);
}
canonical = false;
return;
}
// Otherwise, we did an assign.
auto oldRegion = iter.first->second;
// First check if oldRegion and newRegion are the same. In such a case, just
// return.
if (oldRegion == newRegion)
return;
// Otherwise, we need to actually assign. In such a case, we need to see if
// oldElt was the last element in oldRegion. If so, we need to erase the
// oldRegion from regionToSendingOpMap.
iter.first->second = newRegion;
auto getValueFromOtherRegion = [&]() -> std::optional<Element> {
for (auto pair : elementToRegionMap) {
if (pair.second == oldRegion)
return pair.first;
}
return {};
};
if (auto otherElt = getValueFromOtherRegion()) {
if (updateHistory)
pushRemoveElementFromRegion(*otherElt, oldElt);
} else {
regionToSendingOpMap.erase(oldRegion);
if (updateHistory)
pushRemoveLastElementFromRegion(oldElt);
}
if (updateHistory) {
pushNewElementRegion(oldElt);
pushMergeElementRegions(newElt, oldElt);
}
canonical = false;
}
Partition Partition::join(const Partition &fst, Partition &mutableSnd) {
// READ THIS! Remember, we cannot touch mutableSnd after this point. We just
// use it to canonicalize to avoid having to copy snd. After this point,
// please use the const reference snd to keep each other honest.
mutableSnd.canonicalize();
const auto &snd = mutableSnd;
// First copy fst into result and canonicalize the result.and canonicalize
// fst.
Partition result = fst;
result.canonicalize();
// Push a history join so when processing, we know the next element to
// process.
result.pushCFGHistoryJoin(snd.history);
// For each (sndEltNumber, sndRegionNumber) in snd_reduced...
for (auto pair : snd.elementToRegionMap) {
auto sndEltNumber = pair.first;
auto sndRegionNumber = pair.second;
// Check if result has sndEltNumber already within it...
{
auto resultIter = result.elementToRegionMap.find(sndEltNumber);
if (result.elementToRegionMap.end() != resultIter) {
auto resultRegion = resultIter->second;
// If we do and Element(sndRegionNumber) isn't the same element as
// sndEltNumber, then we know that sndEltNumber isn't the
// representative element of its region in sndReduced. We need to
// ensure that in result, that representative and our current
// value are in the same region. If they are the same value, we can
// just reuse sndEltNumber's region in result for the sending
// check.
if (sndEltNumber != Element(sndRegionNumber)) {
// NOTE: History is updated by Partition::merge(...).
resultRegion = result.merge(sndEltNumber, Element(sndRegionNumber));
}
// Then if sndRegionNumber is sent in sndReduced, make sure mergedRegion
// is sent in result.
auto sndIter = snd.regionToSendingOpMap.find(sndRegionNumber);
if (sndIter != snd.regionToSendingOpMap.end()) {
auto resultIter = result.regionToSendingOpMap.insert(
{resultRegion, sndIter->second});
if (!resultIter.second) {
resultIter.first->second =
resultIter.first->second->merge(sndIter->second);
}
}
continue;
}
}
// At this point, we know that sndEltNumber is not in result.
//
// Check if the representative element number
// (i.e. Element(sndRegionNumber)) for this element in snd is in result. In
// that case, we know that we visited the representative number before we
// visited this elt number (since we are processing in order) so what ever
// is mapped to that number in snd must be the correct region for this
// element as well since this number is guaranteed to be greater than our
// representative and the number mapped to our representative in result must
// be
// <= our representative.
//
// In this case, we do not need to propagate 'send' into resultRegion
// since we would have handled that already when we visited our earlier
// representative element number.
{
auto iter = result.elementToRegionMap.find(Element(sndRegionNumber));
if (iter != result.elementToRegionMap.end()) {
result.elementToRegionMap.insert({sndEltNumber, iter->second});
result.pushMergeElementRegions(sndEltNumber, Element(sndRegionNumber));
// We want fresh_label to always be one element larger than our
// maximum element.
if (result.freshLabel <= Region(sndEltNumber))
result.freshLabel = Region(sndEltNumber + 1);
continue;
}
}
// Otherwise, we have an element that is not in result and its
// representative is not in result. This means that we must be our
// representative in snd since we should have visited our representative
// earlier if we were not due to our traversal being in order. Thus just add
// this to result.
assert(sndEltNumber == Element(sndRegionNumber));
result.elementToRegionMap.insert({sndEltNumber, sndRegionNumber});
result.pushNewElementRegion(sndEltNumber);
auto sndIter = snd.regionToSendingOpMap.find(sndRegionNumber);
if (sndIter != snd.regionToSendingOpMap.end()) {
auto fstIter = result.regionToSendingOpMap.insert(
{sndRegionNumber, sndIter->second});
if (!fstIter.second)
fstIter.first->second = fstIter.first->second->merge(sndIter->second);
}
if (result.freshLabel <= sndRegionNumber)
result.freshLabel = Region(sndEltNumber + 1);
}
// We should have preserved canonicality during the computation above. It
// would be wasteful to need to canonicalize twice.
assert(result.is_canonical_correct());
// result is now the join.
return result;
}
bool Partition::popHistory(
SmallVectorImpl<IsolationHistory> &foundJoinedHistories) {
// We only allow for history rewinding if we are not tracking any
// sending operands. This is because the history rewinding does not
// care about sending. One can either construct a new Partition from
// the current Partition using Partition::removeSendingOperandSet or clear
// the sending information using Partition::clearSendingOperandState().
assert(regionToSendingOpMap.empty() &&
"Can only rewind history if not tracking any sending operands");
if (!history.getHead())
return false;
// Just put in a continue here to ensure that clang-format doesn't do weird
// things with the semicolon.
while (popHistoryOnce(foundJoinedHistories))
continue;
// Return if our history head is non-null so our user knows if there are more
// things to pop.
return history.getHead();
}
void Partition::print(llvm::raw_ostream &os) const {
SmallFrozenMultiMap<Region, Element, 8> multimap;
for (auto [eltNo, regionNo] : elementToRegionMap)
multimap.insert(regionNo, eltNo);
multimap.setFrozen();
os << "[";
for (auto [regionNo, elementNumbers] : multimap.getRange()) {
auto iter = regionToSendingOpMap.find(regionNo);
bool wasSent = iter != regionToSendingOpMap.end();
if (wasSent) {
os << '{';
} else {
os << '(';
}
int j = 0;
for (Element i : elementNumbers) {
os << (j++ ? " " : "") << i;
}
if (wasSent) {
os << '}';
} else {
os << ')';
}
}
os << "]\n";
}
void Partition::printVerbose(llvm::raw_ostream &os) const {
SmallFrozenMultiMap<Region, Element, 8> multimap;
for (auto [eltNo, regionNo] : elementToRegionMap)
multimap.insert(regionNo, eltNo);
multimap.setFrozen();
for (auto [regionNo, elementNumbers] : multimap.getRange()) {
auto iter = regionToSendingOpMap.find(regionNo);
bool wasSent = iter != regionToSendingOpMap.end();
os << "Region: " << regionNo << ". ";
if (wasSent) {
os << '{';
} else {
os << '(';
}
int j = 0;
for (Element i : elementNumbers) {
os << (j++ ? " " : "") << i;
}
if (wasSent) {
os << '}';
} else {
os << ')';
}
os << "\n";
os << "SentInsts:\n";
if (wasSent) {
for (auto op : iter->second->data()) {
os << " ";
op->print(os);
}
} else {
os << "None.\n";
}
}
}
void Partition::printHistory(llvm::raw_ostream &os) const {
llvm::dbgs() << "History Dump!\n";
const auto *head = history.head;
if (!head)
return;
do {
switch (head->getKind()) {
case IsolationHistory::Node::AddNewRegionForElement:
os << "AddNewRegionForElement: " << head->getFirstArgAsElement();
break;
case IsolationHistory::Node::RemoveLastElementFromRegion:
os << "RemoveLastElementFromRegion: " << head->getFirstArgAsElement();
break;
case IsolationHistory::Node::RemoveElementFromRegion: {
os << "RemoveElementFromRegion: " << head->getFirstArgAsElement();
auto extraArgs = head->getAdditionalElementArgs();
if (extraArgs.empty())
break;
llvm::interleave(extraArgs, os, ", ");
break;
}
case IsolationHistory::Node::MergeElementRegions: {
os << "MergeElementRegions: " << head->getFirstArgAsElement();
auto extraArgs = head->getAdditionalElementArgs();
if (extraArgs.empty())
break;
os << ", ";
llvm::interleave(extraArgs, os, ", ");
break;
}
case IsolationHistory::Node::CFGHistoryJoin:
os << "CFGHistoryJoin";
break;
case IsolationHistory::Node::SequenceBoundary:
os << "SequenceBoundary";
break;
}
os << "\n";
} while ((head = head->getParent()));
}
bool Partition::is_canonical_correct() const {
#ifdef NDEBUG
return true;
#else
if (!canonical)
return true; // vacuously correct
auto fail = [&](Element i, int type) {
llvm::errs() << "FAIL(i=" << i << "; type=" << type << "): ";
print(llvm::errs());
return false;
};
for (auto &[eltNo, regionNo] : elementToRegionMap) {
// Labels should not exceed fresh_label.
if (regionNo >= freshLabel)
return fail(eltNo, 0);
// The label of a region should be at most as large as each index in it.
if ((unsigned)regionNo > eltNo)
return fail(eltNo, 1);
// Each region label should also be an element of the partition.
if (!elementToRegionMap.count(Element(regionNo)))
return fail(eltNo, 2);
// Each element that is also a region label should be mapped to itself.
if (elementToRegionMap.at(Element(regionNo)) != regionNo)
return fail(eltNo, 3);
}
// Before we do anything, validate region to region to sending op map.
validateRegionToSendingOpMapRegions();
return true;
#endif
}
Region Partition::merge(Element fst, Element snd, bool updateHistory) {
assert(elementToRegionMap.count(fst) && elementToRegionMap.count(snd));
// Remember: fstRegion and sndRegion are actually elements in
// elementToRegionMap... they are just the representative of the region
// (which is the smallest element number).
auto fstRegion = elementToRegionMap.at(fst);
auto sndRegion = elementToRegionMap.at(snd);
// Our value reps are the same... we can return either. Just return fstRegion.
if (fstRegion == sndRegion)
return fstRegion;
// To maintain canonicality, we require that fstRegion is always less than
// sndRegion. If we do not have that, swap first and second state.
if (fstRegion > sndRegion) {
std::swap(fst, snd);
std::swap(fstRegion, sndRegion);
}
Region result = fstRegion;
// Rename snd and snd's entire region to fst's region.
SmallVector<Element, 32> mergedElements;
horizontalUpdate(snd, fstRegion, mergedElements);
auto iter = regionToSendingOpMap.find(sndRegion);
if (iter != regionToSendingOpMap.end()) {
auto operand = iter->second;
regionToSendingOpMap.erase(iter);
regionToSendingOpMap.insert({fstRegion, operand});
}
assert(is_canonical_correct());
assert(elementToRegionMap.at(fst) == elementToRegionMap.at(snd));
// Now that we are correct/canonicalized, add the merge to our history.
if (updateHistory)
pushMergeElementRegions(fst, mergedElements);
return result;
}
void Partition::canonicalize() {
if (canonical)
return;
canonical = true;
validateRegionToSendingOpMapRegions();
std::map<Region, Region> oldRegionToRelabeledMap;
// We rely on in-order traversal of labels to ensure that we always take the
// lowest eltNumber.
for (auto &[eltNo, regionNo] : elementToRegionMap) {
if (!oldRegionToRelabeledMap.count(regionNo)) {
// if this is the first time encountering this region label,
// then this region label should be relabelled to this index,
// so enter that into the map
oldRegionToRelabeledMap.insert_or_assign(regionNo, Region(eltNo));
}
// Update this label with either its own index, or a prior index that
// shared a region with it.
regionNo = oldRegionToRelabeledMap.at(regionNo);
// The maximum index iterated over will be used here to appropriately
// set fresh_label.
freshLabel = Region(eltNo + 1);
}
// Then relabel our regionToSendingOpMap map if we need to by swapping out the
// old map and updating.
//
// TODO: If we just used an array for this, we could just rewrite and
// re-sort and not have to deal with potential allocations.
decltype(regionToSendingOpMap) oldMap = std::move(regionToSendingOpMap);
for (auto &[oldReg, op] : oldMap) {
auto iter = oldRegionToRelabeledMap.find(oldReg);
assert(iter != oldRegionToRelabeledMap.end());
regionToSendingOpMap[iter->second] = op;
}
assert(is_canonical_correct());
}
void Partition::horizontalUpdate(
Element targetElement, Region newRegion,
llvm::SmallVectorImpl<Element> &mergedElements) {
// It is on our caller to make sure a value is in elementToRegionMap.
Region oldRegion = elementToRegionMap.at(targetElement);
// If our old region is the same as our new region, we do not have anything
// to do.
if (oldRegion == newRegion)
return;
for (auto [element, region] : elementToRegionMap) {
if (region == oldRegion) {
elementToRegionMap.insert_or_assign(element, newRegion);
mergedElements.push_back(element);
}
}
}
bool Partition::popHistoryOnce(
SmallVectorImpl<IsolationHistory> &foundJoinedHistoryNodes) {
const auto *head = history.pop();
if (!head)
return false;
// When popping, we /always/ want to canonicalize.
canonicalize();
switch (head->getKind()) {
case IsolationHistory::Node::SequenceBoundary:
return false;
case IsolationHistory::Node::AddNewRegionForElement: {
// We added an element to its own region... so we should remove it and it
// should be the last element in the region.
auto iter = elementToRegionMap.find(head->getFirstArgAsElement());
assert(iter != elementToRegionMap.end());
Region oldRegion = iter->second;
regionToSendingOpMap.erase(oldRegion);
elementToRegionMap.erase(iter);
assert(llvm::none_of(elementToRegionMap,
[&](std::pair<Element, Region> pair) {
return pair.second == oldRegion;
}) &&
"Should have been last element?!");
return true;
}
case IsolationHistory::Node::RemoveLastElementFromRegion:
// We removed an element from a region and it was the last element. Just
// add new.
trackNewElement(head->getFirstArgAsElement(), false /*update history*/);
return true;
case IsolationHistory::Node::RemoveElementFromRegion:
// We removed an element from a specific region. So, we need to add it
// back.
assignElement(head->getFirstArgAsElement(),
head->getAdditionalElementArgs()[1],
false /*update history*/);
return true;
case IsolationHistory::Node::MergeElementRegions: {
// We merged two regions together. We need to remove all elements from the
// previous region into their own new region.
auto elementsToExtract = head->getAdditionalElementArgs();
assert(elementsToExtract.size());
removeElement(elementsToExtract[0]);
trackNewElement(elementsToExtract[0], false /*update history*/);
for (auto e : elementsToExtract.drop_front()) {
assert(head->getFirstArgAsElement() != e &&
"We assume that we are never removing all values when undoing "
"merging");
removeElement(e);
trackNewElement(e, false /*update history*/);
merge(e, elementsToExtract[0], false /*update history*/);
}
return true;
}
case IsolationHistory::Node::CFGHistoryJoin:
// When we have a CFG History Merge, we cannot simply pop. Instead, we need
// to signal to the user that they need to visit each history node in turn
// by returning it in the out parameter.
auto newHistory = IsolationHistory(history.factory);
newHistory.head = head->getFirstArgAsNode();
foundJoinedHistoryNodes.push_back(newHistory);
return true;
}
}
//===----------------------------------------------------------------------===//
// MARK: IsolationHistory
//===----------------------------------------------------------------------===//
// Push onto the history list that \p value should be added into its own
// independent region.
IsolationHistory::Node *
IsolationHistory::pushNewElementRegion(Element element) {
unsigned size = Node::totalSizeToAlloc<Element>(0);
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem) Node(Node::AddNewRegionForElement, head, element);
return getHead();
}
IsolationHistory::Node *
IsolationHistory::pushHistorySequenceBoundary(SILLocation loc) {
unsigned size = Node::totalSizeToAlloc<Element>(0);
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem) Node(Node::SequenceBoundary, head, loc);
return getHead();
}
// Push onto the history that \p value should be removed from any region that it
// is apart of and placed within its own separate region.
void IsolationHistory::pushRemoveLastElementFromRegion(Element element) {
unsigned size = Node::totalSizeToAlloc<Element>(0);
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem) Node(Node::RemoveLastElementFromRegion, head, element);
}
void IsolationHistory::pushRemoveElementFromRegion(
Element otherElementInOldRegion, Element element) {
unsigned size = Node::totalSizeToAlloc<Element>(1);
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem) Node(Node::RemoveElementFromRegion, head, element,
{otherElementInOldRegion});
}
void IsolationHistory::pushMergeElementRegions(Element elementToMergeInto,
ArrayRef<Element> eltsToMerge) {
assert(llvm::none_of(eltsToMerge,
[&](Element elt) { return elt == elementToMergeInto; }));
unsigned size = Node::totalSizeToAlloc<Element>(eltsToMerge.size());
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem)
Node(Node::MergeElementRegions, head, elementToMergeInto, eltsToMerge);
}
// Push that \p other should be merged into this region.
void IsolationHistory::pushCFGHistoryJoin(Node *otherNode) {
// If otherNode is nullptr or represents our same history, do not merge.
if (!otherNode || otherNode == head)
return;
// If we do not have any history, just take on the history of otherNode. We
// are going to merge our contents.
if (!head) {
head = otherNode;
return;
}
// Otherwise, create a node that joins our true head and other node as a side
// path we can follow.
unsigned size = Node::totalSizeToAlloc<Element>(0);
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem) Node(Node(Node::CFGHistoryJoin, head, otherNode));
}
IsolationHistory::Node *IsolationHistory::pop() {
if (!head)
return nullptr;
auto *result = head;
head = head->parent;
return result;
}