Files
swift-mirror/lib/AST/ASTDemangler.cpp
Anthony Latsis bda6edb85c AST: Rename GenericContext::isGeneric to hasGenericParamList
`isGeneric` is a misleading name because this method checks for the
existence of a `GenericParamList`, which is not implied by genericity.
2025-11-11 15:55:16 +00:00

1727 lines
57 KiB
C++

//===--- ASTDemangler.cpp ----------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Defines a builder concept for the TypeDecoder and MetadataReader which builds
// AST Types, and a utility function wrapper which takes a mangled string and
// feeds it through the TypeDecoder instance.
//
// The RemoteAST library defines a MetadataReader instance that uses this
// concept, together with some additional utilities.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTDemangler.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ClangModuleLoader.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DeclNameExtractor.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Module.h"
#include "swift/AST/ModuleNameLookup.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/SILLayout.h"
#include "swift/AST/Type.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/Types.h"
#include "swift/AST/USRGeneration.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Demangling/Demangler.h"
#include "swift/Demangling/ManglingMacros.h"
#include "clang/Tooling/Refactor/USRFinder.h"
#include "llvm/ADT/StringSwitch.h"
using namespace swift;
Decl *swift::Demangle::getDeclForUSR(ASTContext &ctx, StringRef usr,
GenericSignature genericSig) {
if (!usr.starts_with("s:"))
return nullptr;
std::string mangling(usr);
mangling.replace(0, 2, MANGLING_PREFIX_STR);
Demangle::Context Dem;
auto node = Dem.demangleSymbolAsNode(mangling);
ASTBuilder builder(ctx, genericSig);
auto hasMatchingUSR = [usr](const ValueDecl *VD) {
SmallString<128> candidateUSR;
llvm::raw_svector_ostream OS(candidateUSR);
if (ide::printValueDeclSwiftUSR(VD, OS))
return false;
return usr == candidateUSR;
};
return builder.findDecl(node, /*isMatchingValueDecl=*/hasMatchingUSR);
}
Type swift::Demangle::getTypeForMangling(ASTContext &ctx,
StringRef mangling,
GenericSignature genericSig) {
Demangle::Context Dem;
auto node = Dem.demangleSymbolAsNode(mangling);
if (!node)
return Type();
ASTBuilder builder(ctx, genericSig);
return builder.decodeMangledType(node);
}
TypeDecl *swift::Demangle::getTypeDeclForMangling(ASTContext &ctx,
StringRef mangling,
GenericSignature genericSig) {
Demangle::Context Dem;
auto node = Dem.demangleSymbolAsNode(mangling);
if (!node)
return nullptr;
ASTBuilder builder(ctx, genericSig);
return builder.createTypeDecl(node);
}
TypeDecl *swift::Demangle::getTypeDeclForUSR(ASTContext &ctx,
StringRef usr,
GenericSignature genericSig) {
if (!usr.starts_with("s:"))
return nullptr;
std::string mangling(usr);
mangling.replace(0, 2, MANGLING_PREFIX_STR);
return getTypeDeclForMangling(ctx, mangling, genericSig);
}
using ValueDeclPredicate = llvm::function_ref<bool(const ValueDecl *)>;
static Decl *findTopLevelClangDecl(ClangModuleLoader *importer, DeclName name,
ValueDeclPredicate predicate) {
struct Consumer : VisibleDeclConsumer {
ValueDecl *Result = nullptr;
ValueDeclPredicate Predicate;
explicit Consumer(ValueDeclPredicate Predicate) : Predicate(Predicate) {}
void foundDecl(ValueDecl *decl, DeclVisibilityKind reason,
DynamicLookupInfo dynamicLookupInfo = {}) override {
if (Result != nullptr)
return;
if (Predicate(decl))
Result = decl;
}
} consumer(predicate);
importer->lookupValue(name, consumer);
return consumer.Result;
}
Decl *ASTBuilder::findDecl(
NodePointer node,
llvm::function_ref<bool(const ValueDecl *)> isMatchingValueDecl) {
if (node == nullptr)
return nullptr;
if (auto *TD = createTypeDecl(node))
return TD;
switch (node->getKind()) {
case Node::Kind::Global:
case Node::Kind::Static:
case Node::Kind::BoundGenericEnum:
case Node::Kind::BoundGenericClass:
case Node::Kind::BoundGenericFunction:
case Node::Kind::BoundGenericProtocol:
case Node::Kind::BoundGenericStructure:
case Node::Kind::BoundGenericTypeAlias:
case Node::Kind::BoundGenericOtherNominalType:
return findDecl(node->getFirstChild(), isMatchingValueDecl);
default:
// We should have arrived at a declaration node by now
break;
}
DeclNameExtractor NameExtractor(Ctx);
DeclName name;
Identifier privateDiscriminator;
if (!NameExtractor.extractDeclName(node, name, privateDiscriminator))
return nullptr;
auto contextNode = node->getFirstChild();
if (!contextNode)
return nullptr;
SmallVector<ValueDecl *, 4> candidates;
if (contextNode->getKind() == Node::Kind::Module) {
// If a foreign Clang module, perform lookup in Clang importer
if (getForeignModuleKind(contextNode)) {
auto *importer = Ctx.getClangModuleLoader();
return findTopLevelClangDecl(importer, name, isMatchingValueDecl);
}
ModuleDecl *scratch;
auto potentialModules = findPotentialModules(contextNode, scratch);
for (auto *module : potentialModules) {
module->lookupMember(candidates, module, name, privateDiscriminator);
}
} else {
auto *DC = findDeclContext(contextNode);
if (!DC)
return nullptr;
auto *module = DC->getParentModule();
if (isa<ExtensionDecl>(DC))
DC = DC->getSelfNominalTypeDecl();
module->lookupMember(candidates, DC, name, privateDiscriminator);
}
for (auto *candidate : candidates) {
if (isMatchingValueDecl(candidate))
return candidate;
}
return nullptr;
}
Type ASTBuilder::decodeMangledType(NodePointer node, bool forRequirement) {
return swift::Demangle::decodeMangledType(*this, node, forRequirement)
.getType();
}
TypeDecl *ASTBuilder::createTypeDecl(NodePointer node) {
if (node->getKind() == Node::Kind::Global)
return createTypeDecl(node->getChild(0));
// Special case: associated types are not DeclContexts.
if (node->getKind() == Node::Kind::AssociatedTypeRef) {
if (node->getNumChildren() != 2)
return nullptr;
auto *DC = findDeclContext(node->getChild(0));
auto *proto = dyn_cast_or_null<ProtocolDecl>(DC);
if (proto == nullptr)
return nullptr;
auto name = getIdentifier(node->getChild(1)->getText());
return proto->getAssociatedType(name);
}
auto *DC = findDeclContext(node);
return dyn_cast_or_null<GenericTypeDecl>(DC);
}
Type
ASTBuilder::createBuiltinType(StringRef builtinName,
StringRef mangledName) {
if (builtinName.starts_with(BUILTIN_TYPE_NAME_PREFIX)) {
SmallVector<ValueDecl *, 1> decls;
StringRef strippedName =
builtinName.drop_front(BUILTIN_TYPE_NAME_PREFIX.size());
Ctx.TheBuiltinModule->lookupValue(getIdentifier(strippedName),
NLKind::QualifiedLookup, decls);
if (decls.size() == 1 && isa<TypeDecl>(decls[0]))
return cast<TypeDecl>(decls[0])->getDeclaredInterfaceType();
}
return Type();
}
GenericTypeDecl *ASTBuilder::createTypeDecl(StringRef mangledName,
bool &typeAlias) {
Demangle::Demangler Dem;
Demangle::NodePointer node = Dem.demangleType(mangledName);
if (!node) return nullptr;
return createTypeDecl(node, typeAlias);
}
ProtocolDecl *
ASTBuilder::createProtocolDecl(NodePointer node) {
bool typeAlias;
return dyn_cast_or_null<ProtocolDecl>(
createTypeDecl(node, typeAlias));
}
Type ASTBuilder::createNominalType(GenericTypeDecl *decl) {
auto *nominalDecl = dyn_cast<NominalTypeDecl>(decl);
if (!nominalDecl)
return Type();
// If the declaration is generic, fail.
if (nominalDecl->isGenericContext())
return Type();
return nominalDecl->getDeclaredType();
}
Type ASTBuilder::createNominalType(GenericTypeDecl *decl, Type parent) {
auto *nominalDecl = dyn_cast<NominalTypeDecl>(decl);
if (!nominalDecl)
return Type();
// If the declaration is generic, fail.
if (nominalDecl->hasGenericParamList())
return Type();
// Imported types can be renamed to be members of other (non-generic)
// types, but the mangling does not have a parent type. Just use the
// declared type directly in this case and skip the parent check below.
bool isImported = nominalDecl->hasClangNode() ||
nominalDecl->getAttrs().hasAttribute<ClangImporterSynthesizedTypeAttr>();
if (isImported && !nominalDecl->isGenericContext())
return nominalDecl->getDeclaredInterfaceType();
// Validate the parent type.
if (!validateParentType(nominalDecl, parent))
return Type();
return NominalType::get(nominalDecl, parent, Ctx);
}
Type ASTBuilder::createTypeAliasType(GenericTypeDecl *decl, Type parent) {
auto *aliasDecl = dyn_cast<TypeAliasDecl>(decl);
if (!aliasDecl)
return Type();
// If the declaration is generic, fail.
if (aliasDecl->getGenericParams())
return Type();
// Imported types can be renamed to be members of other (non-generic)
// types, but the mangling does not have a parent type. Just use the
// declared type directly in this case and skip the parent check below.
bool isImported = aliasDecl->hasClangNode() ||
aliasDecl->getAttrs().hasAttribute<ClangImporterSynthesizedTypeAttr>();
if (isImported && !aliasDecl->isGenericContext())
return aliasDecl->getDeclaredInterfaceType();
// Validate the parent type.
if (!validateParentType(aliasDecl, parent))
return Type();
auto declaredType = aliasDecl->getDeclaredInterfaceType();
if (!parent)
return declaredType;
auto *dc = aliasDecl->getDeclContext();
auto subs = parent->getContextSubstitutionMap(dc);
return declaredType.subst(subs);
}
static SubstitutionMap
createSubstitutionMapFromGenericArgs(GenericSignature genericSig,
ArrayRef<Type> args) {
if (!genericSig)
return SubstitutionMap();
if (genericSig.getGenericParams().size() != args.size())
return SubstitutionMap();
return SubstitutionMap::get(
genericSig, args, LookUpConformanceInModule());
}
Type ASTBuilder::createBoundGenericType(GenericTypeDecl *decl,
ArrayRef<Type> args) {
auto *nominalDecl = dyn_cast<NominalTypeDecl>(decl);
if (!nominalDecl)
return Type();
// If the declaration isn't generic, fail.
if (!nominalDecl->isGenericContext())
return Type();
// Build a SubstitutionMap.
auto genericSig = nominalDecl->getGenericSignature();
auto subs = createSubstitutionMapFromGenericArgs(genericSig, args);
if (!subs)
return Type();
auto origType = nominalDecl->getDeclaredInterfaceType();
// FIXME: We're not checking that the type satisfies the generic
// requirements of the signature here.
return origType.subst(subs);
}
OpaqueTypeDecl *ASTBuilder::resolveOpaqueTypeDecl(NodePointer opaqueDescriptor) {
if (opaqueDescriptor->getKind() != Node::Kind::OpaqueReturnTypeOf)
return nullptr;
auto definingDecl = opaqueDescriptor->getChild(0);
auto definingGlobal = Factory.createNode(Node::Kind::Global);
definingGlobal->addChild(definingDecl, Factory);
auto mangling = mangleNode(definingGlobal, ManglingFlavor);
if (!mangling.isSuccess())
return nullptr;
auto mangledName = mangling.result();
auto moduleNode = findModuleNode(definingDecl);
if (!moduleNode)
return nullptr;
ModuleDecl *scratch;
auto potentialParentModules = findPotentialModules(moduleNode, scratch);
if (potentialParentModules.empty())
return nullptr;
for (auto module : potentialParentModules)
if (auto decl = module->lookupOpaqueResultType(mangledName))
return decl;
return nullptr;
}
Type ASTBuilder::resolveOpaqueType(NodePointer opaqueDescriptor,
ArrayRef<ArrayRef<Type>> args,
unsigned ordinal) {
OpaqueTypeDecl *opaqueDecl = resolveOpaqueTypeDecl(opaqueDescriptor);
if (!opaqueDecl)
return Type();
SmallVector<Type, 8> allArgs;
for (auto argSet : args) {
allArgs.append(argSet.begin(), argSet.end());
}
if (ordinal >= opaqueDecl->getOpaqueGenericParams().size())
return Type();
SubstitutionMap subs = createSubstitutionMapFromGenericArgs(
opaqueDecl->getGenericSignature(), allArgs);
Type interfaceType = opaqueDecl->getOpaqueGenericParams()[ordinal];
return OpaqueTypeArchetypeType::get(opaqueDecl, interfaceType, subs);
}
Type ASTBuilder::createBoundGenericType(GenericTypeDecl *decl,
ArrayRef<Type> args,
Type parent) {
// If the declaration isn't generic, fail.
if (!decl->getGenericParams())
return Type();
// Validate the parent type.
if (!validateParentType(decl, parent))
return Type();
if (auto *nominalDecl = dyn_cast<NominalTypeDecl>(decl))
return BoundGenericType::get(nominalDecl, parent, args);
auto *aliasDecl = cast<TypeAliasDecl>(decl);
auto *dc = aliasDecl->getDeclContext();
SmallVector<Type, 2> subs;
// Combine the substitutions from our parent type with our generic
// arguments.
if (dc->isLocalContext()) {
for (auto *param : dc->getGenericSignatureOfContext().getGenericParams()) {
subs.push_back(param);
}
} else if (parent) {
auto parentSubs = parent->getContextSubstitutionMap(
dc).getReplacementTypes();
subs.append(parentSubs.begin(), parentSubs.end());
}
auto genericSig = aliasDecl->getGenericSignature();
ASSERT(genericSig.getInnermostGenericParams().size() == args.size());
subs.append(args.begin(), args.end());
auto subMap = SubstitutionMap::get(genericSig, subs,
LookUpConformanceInModule());
return aliasDecl->getDeclaredInterfaceType().subst(subMap);
}
Type ASTBuilder::createTupleType(ArrayRef<Type> eltTypes, ArrayRef<StringRef> labels) {
// Unwrap unlabeled one-element tuples.
//
// FIXME: The behavior of one-element labeled tuples is inconsistent
// throughout the different re-implementations of type substitution
// and pack expansion.
if (eltTypes.size() == 1 &&
!eltTypes[0]->is<PackExpansionType>() &&
labels[0].empty()) {
return eltTypes[0];
}
SmallVector<TupleTypeElt, 4> elements;
elements.reserve(eltTypes.size());
for (unsigned i : indices(eltTypes)) {
Identifier label;
if (!labels[i].empty())
label = getIdentifier(labels[i]);
elements.emplace_back(eltTypes[i], label);
}
return TupleType::get(elements, Ctx);
}
Type ASTBuilder::createPackType(ArrayRef<Type> eltTypes) {
return PackType::get(Ctx, eltTypes);
}
Type ASTBuilder::createSILPackType(ArrayRef<Type> eltTypes,
bool isElementAddress) {
auto extInfo = SILPackType::ExtInfo(isElementAddress);
SmallVector<CanType, 4> elements;
for (auto eltType : eltTypes)
elements.push_back(eltType->getCanonicalType());
return SILPackType::get(Ctx, extInfo, elements);
}
size_t ASTBuilder::beginPackExpansion(Type countType) {
ActivePackExpansions.push_back(countType);
return 1;
}
void ASTBuilder::advancePackExpansion(size_t index) {
assert(index == 0);
}
Type ASTBuilder::createExpandedPackElement(Type patternType) {
assert(!ActivePackExpansions.empty());
auto countType = ActivePackExpansions.back();
return PackExpansionType::get(patternType, countType);
}
void ASTBuilder::endPackExpansion() {
ActivePackExpansions.pop_back();
}
Type ASTBuilder::createFunctionType(
ArrayRef<Demangle::FunctionParam<Type>> params,
Type output, FunctionTypeFlags flags, ExtendedFunctionTypeFlags extFlags,
FunctionMetadataDifferentiabilityKind diffKind, Type globalActor,
Type thrownError) {
// The result type must be materializable.
if (!output->isMaterializable()) return Type();
bool hasIsolatedParameter = false;
llvm::SmallVector<AnyFunctionType::Param, 8> funcParams;
for (const auto &param : params) {
auto type = param.getType();
// All the argument types must be materializable.
if (!type->isMaterializable())
return Type();
auto label = getIdentifier(param.getLabel());
auto flags = param.getFlags();
auto ownership =
ParamDecl::getParameterSpecifierForValueOwnership(asValueOwnership(flags.getOwnership()));
auto parameterFlags = ParameterTypeFlags()
.withOwnershipSpecifier(ownership)
.withVariadic(flags.isVariadic())
.withAutoClosure(flags.isAutoClosure())
.withNoDerivative(flags.isNoDerivative())
.withIsolated(flags.isIsolated())
.withSending(flags.isSending());
hasIsolatedParameter |= flags.isIsolated();
funcParams.push_back(AnyFunctionType::Param(type, label, parameterFlags));
}
FunctionTypeRepresentation representation;
switch (flags.getConvention()) {
case FunctionMetadataConvention::Swift:
representation = FunctionTypeRepresentation::Swift;
break;
case FunctionMetadataConvention::Block:
representation = FunctionTypeRepresentation::Block;
break;
case FunctionMetadataConvention::Thin:
representation = FunctionTypeRepresentation::Thin;
break;
case FunctionMetadataConvention::CFunctionPointer:
representation = FunctionTypeRepresentation::CFunctionPointer;
break;
}
DifferentiabilityKind resultDiffKind;
switch (diffKind.Value) {
#define SIMPLE_CASE(CASE) \
case FunctionMetadataDifferentiabilityKind::CASE: \
resultDiffKind = DifferentiabilityKind::CASE; break;
SIMPLE_CASE(NonDifferentiable)
SIMPLE_CASE(Forward)
SIMPLE_CASE(Reverse)
SIMPLE_CASE(Normal)
SIMPLE_CASE(Linear)
#undef SIMPLE_CASE
}
FunctionTypeIsolation isolation = FunctionTypeIsolation::forNonIsolated();
if (hasIsolatedParameter) {
isolation = FunctionTypeIsolation::forParameter();
} else if (globalActor) {
isolation = FunctionTypeIsolation::forGlobalActor(globalActor);
} else if (extFlags.isIsolatedAny()) {
isolation = FunctionTypeIsolation::forErased();
} else if (extFlags.isNonIsolatedCaller()) {
isolation = FunctionTypeIsolation::forNonIsolatedCaller();
}
auto noescape =
(representation == FunctionTypeRepresentation::Swift
|| representation == FunctionTypeRepresentation::Block)
&& !flags.isEscaping();
const clang::Type *clangFunctionType = nullptr;
if (shouldStoreClangType(representation))
clangFunctionType = Ctx.getClangFunctionType(funcParams, output,
representation);
// TODO: Handle LifetimeDependenceInfo here.
auto einfo = FunctionType::ExtInfoBuilder(
representation, noescape, flags.isThrowing(), thrownError,
resultDiffKind, clangFunctionType, isolation,
/*LifetimeDependenceInfo*/ {}, extFlags.hasSendingResult())
.withAsync(flags.isAsync())
.withSendable(flags.isSendable())
.build();
return FunctionType::get(funcParams, output, einfo);
}
static ParameterConvention
getParameterConvention(ImplParameterConvention conv) {
switch (conv) {
case Demangle::ImplParameterConvention::Indirect_In:
case Demangle::ImplParameterConvention::Indirect_In_Constant:
return ParameterConvention::Indirect_In;
case Demangle::ImplParameterConvention::Indirect_In_Guaranteed:
return ParameterConvention::Indirect_In_Guaranteed;
case Demangle::ImplParameterConvention::Indirect_Inout:
return ParameterConvention::Indirect_Inout;
case Demangle::ImplParameterConvention::Indirect_InoutAliasable:
return ParameterConvention::Indirect_InoutAliasable;
case Demangle::ImplParameterConvention::Direct_Owned:
return ParameterConvention::Direct_Owned;
case Demangle::ImplParameterConvention::Direct_Unowned:
return ParameterConvention::Direct_Unowned;
case Demangle::ImplParameterConvention::Direct_Guaranteed:
return ParameterConvention::Direct_Guaranteed;
case Demangle::ImplParameterConvention::Pack_Owned:
return ParameterConvention::Pack_Owned;
case Demangle::ImplParameterConvention::Pack_Guaranteed:
return ParameterConvention::Pack_Guaranteed;
case Demangle::ImplParameterConvention::Pack_Inout:
return ParameterConvention::Pack_Inout;
}
llvm_unreachable("covered switch");
}
static std::optional<SILParameterInfo::Options>
getParameterOptions(ImplParameterInfoOptions implOptions) {
SILParameterInfo::Options result;
if (implOptions.contains(ImplParameterInfoFlags::NotDifferentiable)) {
implOptions -= ImplParameterInfoFlags::NotDifferentiable;
result |= SILParameterInfo::NotDifferentiable;
}
if (implOptions.contains(ImplParameterInfoFlags::Sending)) {
implOptions -= ImplParameterInfoFlags::Sending;
result |= SILParameterInfo::Sending;
}
if (implOptions.contains(ImplParameterInfoFlags::Isolated)) {
implOptions -= ImplParameterInfoFlags::Isolated;
result |= SILParameterInfo::Isolated;
}
if (implOptions.contains(ImplParameterInfoFlags::ImplicitLeading)) {
implOptions -= ImplParameterInfoFlags::ImplicitLeading;
result |= SILParameterInfo::ImplicitLeading;
}
// If we did not handle all flags in implOptions, this code was not updated
// appropriately. Return None to signal error.
if (bool(implOptions))
return {};
return result;
}
static ResultConvention getResultConvention(ImplResultConvention conv) {
switch (conv) {
case Demangle::ImplResultConvention::Indirect:
return ResultConvention::Indirect;
case Demangle::ImplResultConvention::Owned:
return ResultConvention::Owned;
case Demangle::ImplResultConvention::Unowned:
return ResultConvention::Unowned;
case Demangle::ImplResultConvention::UnownedInnerPointer:
return ResultConvention::UnownedInnerPointer;
case Demangle::ImplResultConvention::Autoreleased:
return ResultConvention::Autoreleased;
case Demangle::ImplResultConvention::Pack:
return ResultConvention::Pack;
}
llvm_unreachable("covered switch");
}
static std::optional<SILResultInfo::Options>
getResultOptions(ImplResultInfoOptions implOptions) {
SILResultInfo::Options result;
if (implOptions.contains(ImplResultInfoFlags::NotDifferentiable)) {
implOptions -= ImplResultInfoFlags::NotDifferentiable;
result |= SILResultInfo::NotDifferentiable;
}
if (implOptions.contains(ImplResultInfoFlags::IsSending)) {
implOptions -= ImplResultInfoFlags::IsSending;
result |= SILResultInfo::IsSending;
}
// If we did not remove all of the options from implOptions, someone forgot to
// update this code for a new type of flag. Return none to signal error!
if (bool(implOptions))
return {};
return result;
}
static SILCoroutineKind
getCoroutineKind(ImplCoroutineKind kind) {
switch (kind) {
case ImplCoroutineKind::None:
return SILCoroutineKind::None;
case ImplCoroutineKind::YieldOnce:
return SILCoroutineKind::YieldOnce;
case ImplCoroutineKind::YieldOnce2:
return SILCoroutineKind::YieldOnce2;
case ImplCoroutineKind::YieldMany:
return SILCoroutineKind::YieldMany;
}
llvm_unreachable("unknown coroutine kind");
}
Type ASTBuilder::createImplFunctionType(
Demangle::ImplParameterConvention calleeConvention,
Demangle::ImplCoroutineKind coroutineKind,
ArrayRef<Demangle::ImplFunctionParam<Type>> params,
ArrayRef<Demangle::ImplFunctionYield<Type>> yields,
ArrayRef<Demangle::ImplFunctionResult<Type>> results,
std::optional<Demangle::ImplFunctionResult<Type>> errorResult,
ImplFunctionTypeFlags flags) {
GenericSignature genericSig;
ParameterConvention funcCalleeConvention =
getParameterConvention(calleeConvention);
SILCoroutineKind funcCoroutineKind =
getCoroutineKind(coroutineKind);
SILFunctionTypeRepresentation representation;
switch (flags.getRepresentation()) {
case ImplFunctionRepresentation::Thick:
representation = SILFunctionTypeRepresentation::Thick;
break;
case ImplFunctionRepresentation::Block:
representation = SILFunctionTypeRepresentation::Block;
break;
case ImplFunctionRepresentation::Thin:
representation = SILFunctionTypeRepresentation::Thin;
break;
case ImplFunctionRepresentation::CFunctionPointer:
representation = SILFunctionTypeRepresentation::CFunctionPointer;
break;
case ImplFunctionRepresentation::Method:
representation = SILFunctionTypeRepresentation::Method;
break;
case ImplFunctionRepresentation::ObjCMethod:
representation = SILFunctionTypeRepresentation::ObjCMethod;
break;
case ImplFunctionRepresentation::WitnessMethod:
representation = SILFunctionTypeRepresentation::WitnessMethod;
break;
case ImplFunctionRepresentation::Closure:
representation = SILFunctionTypeRepresentation::Closure;
break;
}
swift::DifferentiabilityKind diffKind;
switch (flags.getDifferentiabilityKind()) {
#define SIMPLE_CASE(CASE) \
case ImplFunctionDifferentiabilityKind::CASE: \
diffKind = swift::DifferentiabilityKind::CASE; break;
SIMPLE_CASE(NonDifferentiable)
SIMPLE_CASE(Forward)
SIMPLE_CASE(Reverse)
SIMPLE_CASE(Normal)
SIMPLE_CASE(Linear)
#undef SIMPLE_CASE
}
auto isolation = SILFunctionTypeIsolation::forUnknown();
if (flags.hasErasedIsolation())
isolation = SILFunctionTypeIsolation::forErased();
// There's no representation of this in the mangling because it can't
// occur in well-formed programs.
bool unimplementable = false;
llvm::SmallVector<SILParameterInfo, 8> funcParams;
llvm::SmallVector<SILYieldInfo, 8> funcYields;
llvm::SmallVector<SILResultInfo, 8> funcResults;
std::optional<SILResultInfo> funcErrorResult;
for (const auto &param : params) {
auto type = param.getType()->getCanonicalType();
auto conv = getParameterConvention(param.getConvention());
auto options = *getParameterOptions(param.getOptions());
funcParams.emplace_back(type, conv, options);
}
for (const auto &yield : yields) {
auto type = yield.getType()->getCanonicalType();
auto conv = getParameterConvention(yield.getConvention());
auto options = *getParameterOptions(yield.getOptions());
funcParams.emplace_back(type, conv, options);
}
for (const auto &result : results) {
auto type = result.getType()->getCanonicalType();
auto conv = getResultConvention(result.getConvention());
auto options = *getResultOptions(result.getOptions());
// We currently set sending result at the function level, but we set sending
// result on each result.
if (flags.hasSendingResult())
options |= SILResultInfo::IsSending;
funcResults.emplace_back(type, conv, options);
}
if (errorResult) {
auto type = errorResult->getType()->getCanonicalType();
auto conv = getResultConvention(errorResult->getConvention());
funcErrorResult.emplace(type, conv);
}
const clang::Type *clangFnType = nullptr;
if (shouldStoreClangType(representation)) {
assert(funcResults.size() <= 1 && funcYields.size() == 0 &&
"C functions and blocks have at most 1 result and 0 yields.");
auto result =
funcResults.empty() ? std::optional<SILResultInfo>() : funcResults[0];
clangFnType = getASTContext().getCanonicalClangFunctionType(
funcParams, result, representation);
}
auto einfo =
SILFunctionType::ExtInfoBuilder(
representation, flags.isPseudogeneric(), !flags.isEscaping(),
flags.isSendable(), flags.isAsync(), unimplementable, isolation,
diffKind, clangFnType, /*LifetimeDependenceInfo*/ {})
.build();
return SILFunctionType::get(genericSig, einfo, funcCoroutineKind,
funcCalleeConvention, funcParams, funcYields,
funcResults, funcErrorResult,
SubstitutionMap(), SubstitutionMap(), Ctx);
}
Type ASTBuilder::createProtocolCompositionType(
ArrayRef<ProtocolDecl *> protocols,
Type superclass,
bool isClassBound,
bool forRequirement) {
std::vector<Type> members;
for (auto protocol : protocols)
members.push_back(protocol->getDeclaredInterfaceType());
if (superclass && superclass->getClassOrBoundGenericClass())
members.push_back(superclass);
// FIXME: move-only generics
InvertibleProtocolSet inverses;
Type composition = ProtocolCompositionType::get(Ctx, members, inverses,
isClassBound);
if (forRequirement)
return composition;
return ExistentialType::get(composition);
}
Type ASTBuilder::createProtocolTypeFromDecl(ProtocolDecl *protocol) {
return protocol->getDeclaredInterfaceType();
}
static MetatypeRepresentation
getMetatypeRepresentation(ImplMetatypeRepresentation repr) {
switch (repr) {
case Demangle::ImplMetatypeRepresentation::Thin:
return MetatypeRepresentation::Thin;
case Demangle::ImplMetatypeRepresentation::Thick:
return MetatypeRepresentation::Thick;
case Demangle::ImplMetatypeRepresentation::ObjC:
return MetatypeRepresentation::ObjC;
}
llvm_unreachable("covered switch");
}
Type ASTBuilder::createExistentialMetatypeType(
Type instance, std::optional<Demangle::ImplMetatypeRepresentation> repr) {
if (auto existential = instance->getAs<ExistentialType>())
instance = existential->getConstraintType();
if (!instance->isAnyExistentialType())
return Type();
if (!repr)
return ExistentialMetatypeType::get(instance);
return ExistentialMetatypeType::get(instance,
getMetatypeRepresentation(*repr));
}
Type ASTBuilder::createConstrainedExistentialType(
Type base, ArrayRef<BuiltRequirement> constraints,
ArrayRef<BuiltInverseRequirement> inverseRequirements) {
llvm::SmallDenseMap<AssociatedTypeDecl *, Type> primaryAssociatedTypes;
llvm::SmallDenseSet<AssociatedTypeDecl *> claimed;
for (const auto &req : constraints) {
switch (req.getKind()) {
case RequirementKind::SameShape:
case RequirementKind::Conformance:
case RequirementKind::Superclass:
case RequirementKind::Layout:
break;
case RequirementKind::SameType: {
if (auto *memberTy = req.getFirstType()->getAs<DependentMemberType>()) {
if (memberTy->getBase()->is<GenericTypeParamType>()) {
// This is the only case we understand so far.
if (auto *assocTy = memberTy->getAssocType())
primaryAssociatedTypes[assocTy] = req.getSecondType();
continue;
}
}
break;
}
}
// If we end here, we didn't recognize this requirement.
return Type();
}
auto maybeFormParameterizedProtocolType = [&](ProtocolType *protoTy) -> Type {
auto *proto = protoTy->getDecl();
llvm::SmallVector<Type, 4> args;
for (auto *assocTy : proto->getPrimaryAssociatedTypes()) {
auto found = primaryAssociatedTypes.find(assocTy);
if (found != primaryAssociatedTypes.end()) {
args.push_back(found->second);
claimed.insert(found->first);
continue;
}
}
// We may not have any arguments because the constrained existential is a
// plain protocol with an inverse requirement.
if (args.empty())
return protoTy;
return ParameterizedProtocolType::get(Ctx, protoTy, args);
};
SmallVector<Type, 2> members;
bool hasExplicitAnyObject = false;
InvertibleProtocolSet inverses;
// We're given either a single protocol type, or a composition of protocol
// types. Transform each protocol type to add arguments, if necessary.
if (auto protoTy = base->getAs<ProtocolType>()) {
members.push_back(maybeFormParameterizedProtocolType(protoTy));
} else {
auto compositionTy = base->castTo<ProtocolCompositionType>();
hasExplicitAnyObject = compositionTy->hasExplicitAnyObject();
ASSERT(compositionTy->getInverses().empty());
for (auto member : compositionTy->getMembers()) {
if (auto *protoTy = member->getAs<ProtocolType>()) {
members.push_back(maybeFormParameterizedProtocolType(protoTy));
continue;
}
ASSERT(member->getClassOrBoundGenericClass());
members.push_back(member);
}
}
// Make sure that all arguments were actually used.
ASSERT(claimed.size() == primaryAssociatedTypes.size());
// Handle inverse requirements.
if (!inverseRequirements.empty()) {
for (const auto &inverseReq : inverseRequirements) {
inverses.insert(inverseReq.getKind());
}
}
return ExistentialType::get(ProtocolCompositionType::get(
Ctx, members, inverses, hasExplicitAnyObject));
}
Type ASTBuilder::createSymbolicExtendedExistentialType(NodePointer shapeNode,
ArrayRef<Type> genArgs) {
return Type();
}
Type ASTBuilder::createMetatypeType(
Type instance, std::optional<Demangle::ImplMetatypeRepresentation> repr) {
if (!repr)
return MetatypeType::get(instance);
return MetatypeType::get(instance, getMetatypeRepresentation(*repr));
}
void ASTBuilder::pushGenericParams(ArrayRef<std::pair<unsigned, unsigned>> parameterPacks) {
ParameterPackStack.push_back(ParameterPacks);
ParameterPacks.clear();
ParameterPacks.append(parameterPacks.begin(), parameterPacks.end());
}
void ASTBuilder::popGenericParams() {
ParameterPacks = ParameterPackStack.back();
ParameterPackStack.pop_back();
if (!ValueParametersStack.empty()) {
ValueParameters = ValueParametersStack.back();
ValueParametersStack.pop_back();
}
}
Type ASTBuilder::createGenericTypeParameterType(unsigned depth,
unsigned index) {
if (!ParameterPacks.empty()) {
for (auto pair : ParameterPacks) {
if (pair.first == depth && pair.second == index) {
return GenericTypeParamType::getPack(depth, index, Ctx);
}
}
}
if (!ValueParameters.empty()) {
for (auto tuple : ValueParameters) {
auto pair = std::get<std::pair<unsigned, unsigned>>(tuple);
auto type = std::get<Type>(tuple);
if (pair.first == depth && pair.second == index) {
return GenericTypeParamType::getValue(depth, index, type, Ctx);
}
}
}
return GenericTypeParamType::getType(depth, index, Ctx);
}
Type ASTBuilder::createDependentMemberType(StringRef member,
Type base) {
auto identifier = getIdentifier(member);
if (auto *archetype = base->getAs<ArchetypeType>()) {
if (Type memberType = archetype->getNestedTypeByName(identifier))
return memberType;
}
if (base->isTypeParameter()) {
return DependentMemberType::get(base, identifier);
}
return Type();
}
Type ASTBuilder::createDependentMemberType(StringRef member,
Type base,
ProtocolDecl *protocol) {
auto identifier = getIdentifier(member);
if (auto *archetype = base->getAs<ArchetypeType>()) {
if (auto assocType = protocol->getAssociatedType(identifier))
return archetype->getNestedType(assocType);
}
if (base->isTypeParameter()) {
if (auto assocType = protocol->getAssociatedType(identifier))
return DependentMemberType::get(base, assocType);
}
return Type();
}
#define REF_STORAGE(Name, ...) \
Type ASTBuilder::create##Name##StorageType(Type base) { \
return Name##StorageType::get(base, Ctx); \
}
#include "swift/AST/ReferenceStorage.def"
Type ASTBuilder::createSILBoxType(Type base) {
return SILBoxType::get(base->getCanonicalType());
}
/// Utility function to produce a Requirement from an InverseRequirement.
static Requirement inverseAsRequirement(const InverseRequirement &inverseReq) {
ASTContext &ctx = inverseReq.subject->getASTContext();
InvertibleProtocolSet inverses;
inverses.insert(inverseReq.getKind());
Type constraintType = ProtocolCompositionType::get(
ctx, { }, inverses, /*hasExplicitAnyObject=*/false);
return Requirement(
RequirementKind::Conformance, inverseReq.subject, constraintType);
}
/// Utility function to append Requirements produced from the given set of
/// InverseRequirements to the `requirements` vector.
static void appendInversesAsRequirements(
ArrayRef<InverseRequirement> inverseRequirements,
SmallVectorImpl<Requirement> &requirements) {
for (const auto &inverseReq : inverseRequirements)
requirements.push_back(inverseAsRequirement(inverseReq));
}
Type ASTBuilder::createSILBoxTypeWithLayout(
ArrayRef<BuiltSILBoxField> fields,
ArrayRef<BuiltSubstitution> Substitutions,
ArrayRef<BuiltRequirement> Requirements,
ArrayRef<BuiltInverseRequirement> InverseRequirements) {
SmallVector<Type, 4> replacements;
SmallVector<GenericTypeParamType *, 2> genericTypeParams;
for (const auto &s : Substitutions) {
if (auto *t = dyn_cast_or_null<GenericTypeParamType>(s.first.getPointer()))
genericTypeParams.push_back(t);
replacements.push_back(s.second);
}
GenericSignature signature;
if (!genericTypeParams.empty()) {
SmallVector<BuiltRequirement, 2> RequirementsVec(Requirements);
appendInversesAsRequirements(InverseRequirements, RequirementsVec);
signature = swift::buildGenericSignature(Ctx,
signature,
genericTypeParams,
std::move(RequirementsVec),
/*allowInverses=*/true);
}
SmallVector<SILField, 4> silFields;
for (auto field: fields)
silFields.emplace_back(field.getPointer()->getCanonicalType(),
field.getInt());
SILLayout *layout =
SILLayout::get(Ctx, signature.getCanonicalSignature(), silFields,
/*captures generics*/ false);
SubstitutionMap substs;
if (signature)
substs = createSubstitutionMapFromGenericArgs(
signature, replacements);
return SILBoxType::get(Ctx, layout, substs);
}
Type ASTBuilder::createObjCClassType(StringRef name) {
auto typeDecl =
findForeignTypeDecl(name, /*relatedEntityKind*/{},
ForeignModuleKind::Imported,
Demangle::Node::Kind::Class);
if (!typeDecl) return Type();
return typeDecl->getDeclaredInterfaceType();
}
Type ASTBuilder::createBoundGenericObjCClassType(StringRef name,
ArrayRef<Type> args) {
auto typeDecl =
findForeignTypeDecl(name, /*relatedEntityKind*/{},
ForeignModuleKind::Imported,
Demangle::Node::Kind::Class);
if (!typeDecl ||
!isa<ClassDecl>(typeDecl)) return Type();
if (!typeDecl->getGenericParams() ||
typeDecl->getGenericParams()->size() != args.size())
return Type();
Type parent;
auto *dc = typeDecl->getDeclContext();
if (dc->isTypeContext()) {
if (dc->isGenericContext())
return Type();
parent = dc->getDeclaredInterfaceType();
}
return BoundGenericClassType::get(cast<ClassDecl>(typeDecl),
parent, args);
}
ProtocolDecl *ASTBuilder::createObjCProtocolDecl(StringRef name) {
auto typeDecl =
findForeignTypeDecl(name, /*relatedEntityKind*/{},
ForeignModuleKind::Imported,
Demangle::Node::Kind::Protocol);
if (auto *protocolDecl = dyn_cast_or_null<ProtocolDecl>(typeDecl))
return protocolDecl;
return nullptr;
}
Type ASTBuilder::createDynamicSelfType(Type selfType) {
return DynamicSelfType::get(selfType, Ctx);
}
Type ASTBuilder::createForeignClassType(StringRef mangledName) {
bool typeAlias = false;
auto typeDecl = createTypeDecl(mangledName, typeAlias);
if (!typeDecl) return Type();
return typeDecl->getDeclaredInterfaceType();
}
Type ASTBuilder::getUnnamedForeignClassType() {
return Type();
}
Type ASTBuilder::getOpaqueType() {
return Type();
}
Type ASTBuilder::createOptionalType(Type base) {
return OptionalType::get(base);
}
Type ASTBuilder::createArrayType(Type base) {
return ArraySliceType::get(base);
}
Type ASTBuilder::createInlineArrayType(Type count, Type element) {
return InlineArrayType::get(count, element);
}
Type ASTBuilder::createDictionaryType(Type key, Type value) {
return DictionaryType::get(key, value);
}
Type ASTBuilder::createIntegerType(intptr_t value) {
return IntegerType::get(std::to_string(value), /*isNegative*/ false, Ctx);
}
Type ASTBuilder::createNegativeIntegerType(intptr_t value) {
return IntegerType::get(std::to_string(value), /*isNegative*/ true, Ctx);
}
Type ASTBuilder::createBuiltinFixedArrayType(Type size, Type element) {
return BuiltinFixedArrayType::get(size->getCanonicalType(),
element->getCanonicalType());
}
GenericSignature
ASTBuilder::createGenericSignature(ArrayRef<BuiltType> builtParams,
ArrayRef<BuiltRequirement> requirements) {
std::vector<GenericTypeParamType *> params;
for (auto &param : builtParams) {
auto paramTy = param->getAs<GenericTypeParamType>();
if (!paramTy)
return GenericSignature();
params.push_back(paramTy);
}
return GenericSignature::get(params, requirements);
}
SubstitutionMap
ASTBuilder::createSubstitutionMap(BuiltGenericSignature sig,
ArrayRef<BuiltType> replacements) {
return SubstitutionMap::get(sig, replacements,
LookUpConformanceInModule());
}
Type ASTBuilder::subst(Type subject, const BuiltSubstitutionMap &Subs) const {
return subject.subst(Subs);
}
bool ASTBuilder::validateParentType(TypeDecl *decl, Type parent) {
auto parentDecl = decl->getDeclContext()->getSelfNominalTypeDecl();
// If we don't have a parent type, fast-path.
if (!parent) {
return parentDecl == nullptr;
}
// We do have a parent type. If our type doesn't, it's an error.
if (!parentDecl) {
return false;
}
if (isa<NominalTypeDecl>(decl)) {
// The parent should be a nominal type when desugared.
auto *parentNominal = parent->getAnyNominal();
if (!parentNominal || parentNominal != parentDecl) {
return false;
}
}
// FIXME: validate that the parent is a correct application of the
// enclosing context?
return true;
}
GenericTypeDecl *
ASTBuilder::getAcceptableTypeDeclCandidate(ValueDecl *decl,
Demangle::Node::Kind kind) {
if (kind == Demangle::Node::Kind::Class) {
return dyn_cast<ClassDecl>(decl);
} else if (kind == Demangle::Node::Kind::Enum) {
return dyn_cast<EnumDecl>(decl);
} else if (kind == Demangle::Node::Kind::Protocol) {
return dyn_cast<ProtocolDecl>(decl);
} else if (kind == Demangle::Node::Kind::Structure) {
return dyn_cast<StructDecl>(decl);
} else {
assert(kind == Demangle::Node::Kind::TypeAlias);
return dyn_cast<TypeAliasDecl>(decl);
}
}
DeclContext *ASTBuilder::getNotionalDC() {
if (!NotionalDC) {
NotionalDC = ModuleDecl::createEmpty(getIdentifier(".RemoteAST"), Ctx);
NotionalDC = new (Ctx) TopLevelCodeDecl(NotionalDC);
}
return NotionalDC;
}
GenericTypeDecl *
ASTBuilder::createTypeDecl(NodePointer node,
bool &typeAlias) {
auto DC = findDeclContext(node);
if (!DC)
return nullptr;
typeAlias = isa<TypeAliasDecl>(DC);
return dyn_cast<GenericTypeDecl>(DC);
}
llvm::ArrayRef<ModuleDecl *>
ASTBuilder::findPotentialModules(NodePointer node, ModuleDecl *&scratch) {
assert(node->getKind() == Demangle::Node::Kind::Module);
const auto moduleName = node->getText();
if (moduleName == CLANG_HEADER_MODULE_NAME) {
auto *importer = Ctx.getClangModuleLoader();
scratch = importer->getImportedHeaderModule();
return ArrayRef(&scratch, 1);
}
return Ctx.getModulesByRealOrABIName(moduleName);
}
Demangle::NodePointer
ASTBuilder::findModuleNode(NodePointer node) {
auto child = node;
while (child->hasChildren() &&
child->getKind() != Demangle::Node::Kind::Module) {
child = child->getFirstChild();
}
if (child->getKind() != Demangle::Node::Kind::Module)
return nullptr;
return child;
}
std::optional<ASTBuilder::ForeignModuleKind>
ASTBuilder::getForeignModuleKind(NodePointer node) {
if (node->getKind() == Demangle::Node::Kind::DeclContext)
return getForeignModuleKind(node->getFirstChild());
if (node->getKind() != Demangle::Node::Kind::Module)
return std::nullopt;
return llvm::StringSwitch<std::optional<ForeignModuleKind>>(node->getText())
.Case(MANGLING_MODULE_OBJC, ForeignModuleKind::Imported)
.Case(MANGLING_MODULE_CLANG_IMPORTER,
ForeignModuleKind::SynthesizedByImporter)
.Default(std::nullopt);
}
LayoutConstraint ASTBuilder::getLayoutConstraint(LayoutConstraintKind kind) {
return LayoutConstraint::getLayoutConstraint(kind, getASTContext());
}
LayoutConstraint ASTBuilder::getLayoutConstraintWithSizeAlign(
LayoutConstraintKind kind, unsigned size, unsigned alignment) {
return LayoutConstraint::getLayoutConstraint(kind, size, alignment,
getASTContext());
}
InverseRequirement ASTBuilder::createInverseRequirement(
Type subject, InvertibleProtocolKind kind) {
auto knownProtoKind = getKnownProtocolKind(kind);
auto proto = subject->getASTContext().getProtocol(knownProtoKind);
return InverseRequirement(subject, proto, SourceLoc());
}
CanGenericSignature ASTBuilder::demangleGenericSignature(
NominalTypeDecl *nominalDecl,
NodePointer node) {
auto baseGenericSig = nominalDecl->getGenericSignature();
// The generic signature is for a constrained extension of nominalDecl, so
// we introduce the parameter packs from the nominal's generic signature.
ParameterPackStack.push_back(ParameterPacks);
ParameterPacks.clear();
ValueParametersStack.push_back(ValueParameters);
ValueParameters.clear();
for (auto *paramTy : baseGenericSig.getGenericParams()) {
if (paramTy->isParameterPack())
ParameterPacks.emplace_back(paramTy->getDepth(), paramTy->getIndex());
if (paramTy->isValue()) {
auto pair = std::make_pair(paramTy->getDepth(), paramTy->getIndex());
auto tuple = std::make_tuple(pair, paramTy->getValueType());
ValueParameters.emplace_back(tuple);
}
}
SWIFT_DEFER { popGenericParams(); };
// Constrained extensions mangle the subset of requirements not satisfied
// by the nominal's generic signature.
SmallVector<Requirement, 2> requirements;
SmallVector<InverseRequirement, 2> inverseRequirements;
decodeRequirement<BuiltType, BuiltRequirement, BuiltInverseRequirement,
BuiltLayoutConstraint, ASTBuilder>(
node, requirements, inverseRequirements, *this);
appendInversesAsRequirements(inverseRequirements, requirements);
return buildGenericSignature(Ctx, baseGenericSig, {}, std::move(requirements),
/*allowInverses=*/true)
.getCanonicalSignature();
}
DeclContext *
ASTBuilder::findDeclContext(NodePointer node) {
switch (node->getKind()) {
case Demangle::Node::Kind::DeclContext:
case Demangle::Node::Kind::Type:
case Demangle::Node::Kind::BoundGenericClass:
case Demangle::Node::Kind::BoundGenericEnum:
case Demangle::Node::Kind::BoundGenericProtocol:
case Demangle::Node::Kind::BoundGenericStructure:
case Demangle::Node::Kind::BoundGenericTypeAlias:
return findDeclContext(node->getFirstChild());
case Demangle::Node::Kind::Module: {
// A Module node is not enough information to find the decl context.
// The reason being that the module name in a mangled name can either be
// the module's ABI name, which is potentially not unique (due to the
// -module-abi-name flag), or the module's real name, if mangling for the
// debugger or USR together with the OriginallyDefinedIn attribute for
// example.
assert(false && "Looked up module as decl context directly!");
ModuleDecl *scratch;
auto modules = findPotentialModules(node, scratch);
return modules.empty() ? nullptr : modules[0];
}
case Demangle::Node::Kind::Class:
case Demangle::Node::Kind::Enum:
case Demangle::Node::Kind::Protocol:
case Demangle::Node::Kind::Structure:
case Demangle::Node::Kind::TypeAlias: {
const auto &declNameNode = node->getChild(1);
// Handle local declarations.
if (declNameNode->getKind() == Demangle::Node::Kind::LocalDeclName) {
// Find the AST node for the defining module.
auto moduleNode = findModuleNode(node);
if (!moduleNode)
return nullptr;
ModuleDecl *scratch;
auto potentialModules = findPotentialModules(moduleNode, scratch);
if (potentialModules.empty())
return nullptr;
// Look up the local type by its mangling.
auto mangling = Demangle::mangleNode(node, ManglingFlavor);
if (!mangling.isSuccess())
return nullptr;
auto mangledName = mangling.result();
for (auto *module : potentialModules)
if (auto *decl = module->lookupLocalType(mangledName))
return dyn_cast<DeclContext>(decl);
return nullptr;
}
StringRef name;
StringRef relatedEntityKind;
Identifier privateDiscriminator;
if (!extractNameNodeInfo(Ctx, declNameNode, name, relatedEntityKind,
privateDiscriminator)) {
return nullptr;
}
// Do some special logic for foreign type declarations.
if (privateDiscriminator.empty()) {
if (auto foreignModuleKind = getForeignModuleKind(node->getChild(0))) {
return findForeignTypeDecl(name, relatedEntityKind,
foreignModuleKind.value(),
node->getKind());
}
}
auto child = node->getFirstChild();
if (child->getKind() == Node::Kind::Module) {
ModuleDecl *scratch;
auto potentialModules = findPotentialModules(child, scratch);
if (potentialModules.empty())
return nullptr;
for (auto *module : potentialModules)
if (auto typeDecl = findTypeDecl(module, getIdentifier(name),
privateDiscriminator, node->getKind()))
return typeDecl;
return nullptr;
}
if (auto *dc = findDeclContext(child))
if (auto typeDecl = findTypeDecl(dc, getIdentifier(name),
privateDiscriminator, node->getKind()))
return typeDecl;
return nullptr;
}
case Demangle::Node::Kind::Global:
return findDeclContext(node->getChild(0));
case Demangle::Node::Kind::Extension: {
ModuleDecl *scratch;
auto moduleDecls = findPotentialModules(node->getFirstChild(), scratch);
if (moduleDecls.empty())
return nullptr;
auto *nominalDecl = dyn_cast_or_null<NominalTypeDecl>(
findDeclContext(node->getChild(1)));
if (!nominalDecl)
return nullptr;
CanGenericSignature genericSig;
bool genericSigMatchesNominal = false;
if (node->getNumChildren() > 2) {
genericSig = demangleGenericSignature(nominalDecl, node->getChild(2));
// If the generic signature are equivalent to that of the nominal type,
// we're either in another module or the nominal type is generic and
// involves inverse requirements on its generic parameters.
genericSigMatchesNominal = genericSig &&
genericSig == nominalDecl->getGenericSignatureOfContext().getCanonicalSignature();
// If the generic signature is equivalent to that of the nominal type,
// and we're in the same module, it's due to inverse requirements.
// Just return the nominal declaration.
for (auto *moduleDecl : moduleDecls) {
if (genericSigMatchesNominal &&
nominalDecl->getParentModule() == moduleDecl) {
return nominalDecl;;
}
}
}
for (auto *ext : nominalDecl->getExtensions()) {
bool found = false;
for (ModuleDecl *module : moduleDecls) {
auto *extensionModule = ext->getParentModule();
if (extensionModule == module ||
extensionModule == module->getUnderlyingModuleIfOverlay()) {
found = true;
break;
}
}
if (!found)
continue;
if (!ext->isConstrainedExtension()) {
if (!genericSig || genericSigMatchesNominal)
return ext;
continue;
}
if (!ext->isWrittenWithConstraints() && !genericSig)
return ext;
auto extSig = ext->getGenericSignature().getCanonicalSignature();
if (extSig == genericSig) {
return ext;
}
// If the extension mangling doesn't include a generic signature, it
// might be because the nominal type suppresses conformance.
if (!genericSig) {
SmallVector<Requirement, 2> requirements;
SmallVector<InverseRequirement, 2> inverses;
extSig->getRequirementsWithInverses(requirements, inverses);
if (requirements.empty())
return ext;
}
}
return nullptr;
}
// Bail out on other kinds of contexts.
default:
return nullptr;
}
}
GenericTypeDecl *
ASTBuilder::findTypeDecl(DeclContext *dc,
Identifier name,
Identifier privateDiscriminator,
Demangle::Node::Kind kind) {
auto module = dc->getParentModule();
// When looking into an extension, look into the nominal instead; the
// important thing is that the module, obtained above, is the module
// containing the extension and not the module containing the nominal
if (isa<ExtensionDecl>(dc))
dc = dc->getSelfNominalTypeDecl();
SmallVector<ValueDecl *, 4> lookupResults;
module->lookupMember(lookupResults, dc, name, privateDiscriminator);
GenericTypeDecl *result = nullptr;
for (auto decl : lookupResults) {
// Ignore results that are not the right kind of type declaration.
auto *candidate = getAcceptableTypeDeclCandidate(decl, kind);
if (!candidate)
continue;
// Ignore results that aren't actually from the defining module.
if (candidate->getParentModule() != module)
continue;
// This is a viable result.
// If we already have a viable result, it's ambiguous, so give up.
if (result) return nullptr;
result = candidate;
}
// If we looked into the standard library module, but didn't find anything,
// try the _Concurrency module, which is also mangled into the Swift module.
if (!result && !dc->getParent() && module->isStdlibModule()) {
ASTContext &ctx = module->getASTContext();
if (auto concurrencyModule = ctx.getLoadedModule(ctx.Id_Concurrency)) {
return findTypeDecl(concurrencyModule, name, privateDiscriminator, kind);
}
}
return result;
}
static std::optional<ClangTypeKind>
getClangTypeKindForNodeKind(Demangle::Node::Kind kind) {
switch (kind) {
case Demangle::Node::Kind::Protocol:
return ClangTypeKind::ObjCProtocol;
case Demangle::Node::Kind::Class:
return ClangTypeKind::ObjCClass;
case Demangle::Node::Kind::TypeAlias:
return ClangTypeKind::Typedef;
case Demangle::Node::Kind::Structure:
case Demangle::Node::Kind::Enum:
return ClangTypeKind::Tag;
default:
return std::nullopt;
}
}
GenericTypeDecl *ASTBuilder::findForeignTypeDecl(StringRef name,
StringRef relatedEntityKind,
ForeignModuleKind foreignKind,
Demangle::Node::Kind kind) {
// Check to see if we have an importer loaded.
auto importer = Ctx.getClangModuleLoader();
if (!importer)
return nullptr;
// Find the unique declaration that has the right kind.
struct Consumer : VisibleDeclConsumer {
Demangle::Node::Kind ExpectedKind;
GenericTypeDecl *Result = nullptr;
bool HadError = false;
explicit Consumer(Demangle::Node::Kind kind) : ExpectedKind(kind) {}
void foundDecl(ValueDecl *decl, DeclVisibilityKind reason,
DynamicLookupInfo dynamicLookupInfo = {}) override {
if (HadError)
return;
if (decl == Result)
return;
if (!Result) {
Result = dyn_cast<GenericTypeDecl>(decl);
HadError |= !Result;
} else {
HadError = true;
Result = nullptr;
}
}
} consumer(kind);
auto found = [&](TypeDecl *found) {
consumer.foundDecl(found, DeclVisibilityKind::VisibleAtTopLevel);
};
std::optional<ClangTypeKind> lookupKind = getClangTypeKindForNodeKind(kind);
if (!lookupKind)
return nullptr;
switch (foreignKind) {
case ForeignModuleKind::SynthesizedByImporter:
if (!relatedEntityKind.empty()) {
importer->lookupRelatedEntity(name, *lookupKind, relatedEntityKind,
found);
break;
}
importer->lookupValue(getIdentifier(name), consumer);
if (consumer.Result)
consumer.Result = getAcceptableTypeDeclCandidate(consumer.Result, kind);
break;
case ForeignModuleKind::Imported:
importer->lookupTypeDecl(name, *lookupKind, found);
}
return consumer.Result;
}
Identifier ASTBuilder::getIdentifier(StringRef name) {
return Demangle::getIdentifier(Ctx, name);
}