Files
swift-mirror/lib/IRGen/GenArray.cpp
Dario Rexin 81af291c4f [IRGen] Fix computation of spare bits for fixed arrays
rdar://159143492

Previously all bits after the spare bits of the first element were marked as spare bits. This caused enum tags to be stored in bits used by the payload.
2025-08-28 12:27:40 -07:00

728 lines
28 KiB
C++

//===--- GenArray.cpp - LLVM type lowering of fixed-size array types ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements TypeInfo subclasses for `Builtin.FixedArray`.
//
//===----------------------------------------------------------------------===//
#include "FixedTypeInfo.h"
#include "GenType.h"
#include "IRGenModule.h"
#include "LoadableTypeInfo.h"
#include "NonFixedTypeInfo.h"
using namespace swift;
using namespace irgen;
template<typename BaseTypeInfo, typename ElementTypeInfo = BaseTypeInfo>
class ArrayTypeInfoBase : public BaseTypeInfo {
protected:
const ElementTypeInfo &Element;
template<typename...Args>
ArrayTypeInfoBase(const ElementTypeInfo &elementTI, Args &&...args)
: BaseTypeInfo(std::forward<Args>(args)...),
Element(elementTI)
{}
static SILType getElementSILType(IRGenModule &IGM,
SILType arrayType) {
return IGM.getLoweredType(AbstractionPattern::getOpaque(),
arrayType.castTo<BuiltinFixedArrayType>()->getElementType());
}
virtual llvm::Value *getArraySize(IRGenFunction &IGF, SILType T) const = 0;
virtual std::optional<uint64_t> getFixedArraySize(SILType T) const = 0;
void eachElementAddrLoop(IRGenFunction &IGF,
SILType T,
llvm::function_ref<void (ArrayRef<Address>)> body,
ArrayRef<Address> addrs) const {
auto fixedSize = getFixedArraySize(T);
if (fixedSize == 0) {
// empty type, nothing to do
return;
}
if (fixedSize == 1) {
auto zero = llvm::ConstantInt::get(IGF.IGM.IntPtrTy, 0);
// only one element to operate on; index to it in each array
SmallVector<Address, 2> eltAddrs;
eltAddrs.reserve(addrs.size());
for (auto index : indices(addrs)) {
eltAddrs.push_back(Element.indexArray(IGF, addrs[index], zero,
getElementSILType(IGF.IGM, T)));
}
return body(eltAddrs);
}
auto arraySize = getArraySize(IGF, T);
auto predBB = IGF.Builder.GetInsertBlock();
auto loopBB = IGF.createBasicBlock("each_array_element");
auto endBB = IGF.createBasicBlock("end_array_element");
auto one = llvm::ConstantInt::get(IGF.IGM.IntPtrTy, 1);
auto zero = llvm::ConstantInt::get(IGF.IGM.IntPtrTy, 0);
if (!fixedSize.has_value()) {
// If the size isn't statically known, we have to dynamically check the
// zero case.
auto isEmptyArray = IGF.Builder.CreateICmpEQ(arraySize, zero);
IGF.Builder.CreateCondBr(isEmptyArray, endBB, loopBB);
} else {
// Otherwise, we statically handled the zero case above.
IGF.Builder.CreateBr(loopBB);
}
IGF.Builder.emitBlock(loopBB);
auto countPhi = IGF.Builder.CreatePHI(IGF.IGM.IntPtrTy, 2);
countPhi->addIncoming(arraySize, predBB);
ConditionalDominanceScope scope(IGF);
SmallVector<llvm::PHINode*, 2> addrPhis;
SmallVector<Address, 2> eltAddrs;
for (auto a : addrs) {
auto *addrPhi = IGF.Builder.CreatePHI(a.getType(), 2);
addrPhi->addIncoming(a.getAddress(), predBB);
addrPhis.push_back(addrPhi);
eltAddrs.push_back(Address(addrPhi, Element.getStorageType(),
a.getAlignment()));
}
body(eltAddrs);
// The just ran body may have generated new blocks. Get the current
// insertion block which will become the other incoming block to the phis
// we've generated.
predBB = IGF.Builder.GetInsertBlock();
for (unsigned i : indices(addrPhis)) {
addrPhis[i]->addIncoming(Element.indexArray(IGF, eltAddrs[i], one,
getElementSILType(IGF.IGM, T))
.getAddress(),
predBB);
}
auto nextCount = IGF.Builder.CreateSub(countPhi, one);
countPhi->addIncoming(nextCount, predBB);
auto done = IGF.Builder.CreateICmpEQ(nextCount, zero);
IGF.Builder.CreateCondBr(done, endBB, loopBB);
IGF.Builder.emitBlock(endBB);
}
public:
void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
SILType T, bool isOutlined) const override {
auto eltTy = getElementSILType(IGF.IGM, T);
eachElementAddrLoop(IGF, T,
[&](ArrayRef<Address> destAndSrc) {
Element.assignWithCopy(IGF, destAndSrc[0],
destAndSrc[1],
eltTy, isOutlined);
}, {dest, src});
}
void assignWithTake(IRGenFunction &IGF, Address dest, Address src,
SILType T, bool isOutlined) const override {
auto eltTy = getElementSILType(IGF.IGM, T);
eachElementAddrLoop(IGF, T,
[&](ArrayRef<Address> destAndSrc) {
Element.assignWithTake(IGF, destAndSrc[0],
destAndSrc[1],
eltTy, isOutlined);
}, {dest, src});
}
void initializeWithCopy(IRGenFunction &IGF, Address dest, Address src,
SILType T, bool isOutlined) const override {
auto eltTy = getElementSILType(IGF.IGM, T);
eachElementAddrLoop(IGF, T,
[&](ArrayRef<Address> destAndSrc) {
Element.initializeWithCopy(IGF, destAndSrc[0],
destAndSrc[1],
eltTy, isOutlined);
}, {dest, src});
}
void initializeWithTake(IRGenFunction &IGF, Address dest, Address src,
SILType T,
bool isOutlined,
bool zeroizeIfSensitive) const override {
auto eltTy = getElementSILType(IGF.IGM, T);
eachElementAddrLoop(IGF, T,
[&](ArrayRef<Address> destAndSrc) {
Element.initializeWithTake(IGF, destAndSrc[0],
destAndSrc[1],
eltTy, isOutlined,
zeroizeIfSensitive);
}, {dest, src});
}
virtual void destroy(IRGenFunction &IGF, Address address, SILType T,
bool isOutlined) const override {
auto eltTy = getElementSILType(IGF.IGM, T);
eachElementAddrLoop(IGF, T,
[&](ArrayRef<Address> elt) {
Element.destroy(IGF, elt[0], eltTy, isOutlined);
}, {address});
}
void collectMetadataForOutlining(OutliningMetadataCollector &collector,
SILType T) const override {
auto &IGM = collector.IGF.IGM;
auto elementTy = getElementSILType(IGM, T);
IGM.getTypeInfo(elementTy).collectMetadataForOutlining(collector,
elementTy);
}
};
template<typename BaseTypeInfo>
class FixedArrayTypeInfoBase : public ArrayTypeInfoBase<BaseTypeInfo> {
protected:
using ArrayTypeInfoBase<BaseTypeInfo>::Element;
const uint64_t ArraySize;
using ArrayTypeInfoBase<BaseTypeInfo>::getElementSILType;
template<typename...Args>
FixedArrayTypeInfoBase(unsigned arraySize,
const BaseTypeInfo &elementTI, Args &&...args)
: ArrayTypeInfoBase<BaseTypeInfo>(elementTI, std::forward<Args>(args)...),
ArraySize(arraySize)
{}
static Size getArraySize(uint64_t arraySize,
const FixedTypeInfo &elementTI) {
// We always pad out the stride, even for the final element.
return Size(arraySize * elementTI.getFixedStride().getValue());
}
static llvm::Type *getArrayType(uint64_t arraySize,
const FixedTypeInfo &elementTI) {
// Start with the element's storage type.
llvm::Type *elementTy = elementTI.getStorageType();
auto &LLVMContext = elementTy->getContext();
if (arraySize == 0) {
return llvm::StructType::get(LLVMContext, {});
}
// If we need to, pad it to stride.
if (elementTI.getFixedSize() < elementTI.getFixedStride()) {
uint64_t paddingBytes = elementTI.getFixedStride().getValue()
- elementTI.getFixedSize().getValue();
auto byteTy = llvm::IntegerType::get(LLVMContext, 8);
auto paddingArrayTy = llvm::ArrayType::get(byteTy, paddingBytes);
if (elementTI.getFixedSize() == Size(0)) {
elementTy = paddingArrayTy;
} else {
elementTy = llvm::StructType::get(LLVMContext,
{elementTy, paddingArrayTy},
/*packed*/ true);
}
}
return llvm::ArrayType::get(elementTy, arraySize);
}
static SpareBitVector getArraySpareBits(uint64_t arraySize,
const FixedTypeInfo &elementTI) {
if (arraySize == 0) {
return SpareBitVector();
}
// Take spare bits from the first element only.
SpareBitVector result = elementTI.getSpareBits();
// We can use the padding to the next element as spare bits too.
auto padding = elementTI.getFixedStride() - elementTI.getFixedSize();
result.appendSetBits(padding.getValueInBits());
// spare bits of any other elements should not be considered
result.appendClearBits(
getArraySize(arraySize - 1, elementTI).getValueInBits());
return result;
}
void eachElement(llvm::function_ref<void()> body) const {
for (uint64_t i = 0; i < ArraySize; ++i) {
body();
}
}
void eachElementAddr(IRGenFunction &IGF, Address addr,
llvm::function_ref<void(Address)> body) const {
for (uint64_t i = 0; i < ArraySize; ++i) {
auto elementAddr = Element.indexArray(IGF, addr,
llvm::ConstantInt::get(IGF.IGM.IntPtrTy, i),
SILType());
body(elementAddr);
}
}
std::optional<uint64_t> getFixedArraySize(SILType T) const override {
return ArraySize;
}
llvm::Value *getArraySize(IRGenFunction &IGF, SILType T) const override {
return llvm::ConstantInt::get(IGF.IGM.IntPtrTy, ArraySize);
}
public:
void getSchema(ExplosionSchema &schema) const override {
eachElement([&]{
Element.getSchema(schema);
});
}
TypeLayoutEntry *
buildTypeLayoutEntry(IRGenModule &IGM,
SILType T,
bool useStructLayouts) const override {
auto eltTy = getElementSILType(IGM, T);
auto elementLayout = Element.buildTypeLayoutEntry(IGM, eltTy,
useStructLayouts);
return IGM.typeLayoutCache.getOrCreateArrayEntry(elementLayout, eltTy,
T.castTo<BuiltinFixedArrayType>()->getSize());
}
void initializeFromParams(IRGenFunction &IGF, Explosion &params,
Address src, SILType T,
bool isOutlined) const override {
auto eltTy = getElementSILType(IGF.IGM, T);
eachElementAddr(IGF, src,
[&](Address elementAddr) {
Element.initializeFromParams(IGF, params, elementAddr,
eltTy, isOutlined);
});
}
// We take extra inhabitants from the first element, if any.
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
if (ArraySize == 0)
return 0;
return Element.getFixedExtraInhabitantCount(IGM);
}
APInt getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
if (ArraySize == 0)
return APInt::getAllOnes(0);
APInt elementMask = Element.getFixedExtraInhabitantMask(IGM);
return elementMask.zext(this->getFixedSize().getValueInBits());
}
/// Create a constant of the given bit width holding one of the extra
/// inhabitants of the type.
/// The index must be less than the value returned by
/// getFixedExtraInhabitantCount().
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
return Element.getFixedExtraInhabitantValue(IGM, bits, index);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
Address src, SILType T,
bool isOutlined) const override {
if (ArraySize == 0)
return llvm::ConstantInt::get(IGF.IGM.Int32Ty, -1);
auto firstElementAddr
= IGF.Builder.CreateElementBitCast(src, Element.getStorageType());
return Element.getExtraInhabitantIndex(IGF, firstElementAddr,
getElementSILType(IGF.IGM, T),
isOutlined);
}
void storeExtraInhabitant(IRGenFunction &IGF,
llvm::Value *index,
Address dest, SILType T,
bool isOutlined) const override {
auto firstElementAddr
= IGF.Builder.CreateElementBitCast(dest, Element.getStorageType());
Element.storeExtraInhabitant(IGF, index, firstElementAddr,
getElementSILType(IGF.IGM, T),
isOutlined);
}
};
class LoadableArrayTypeInfo final
: public FixedArrayTypeInfoBase<LoadableTypeInfo>
{
public:
LoadableArrayTypeInfo(uint64_t arraySize,
const LoadableTypeInfo &elementTI)
: FixedArrayTypeInfoBase(arraySize, elementTI,
getArrayType(arraySize, elementTI),
getArraySize(arraySize, elementTI),
getArraySpareBits(arraySize, elementTI),
elementTI.getFixedAlignment(),
elementTI.isTriviallyDestroyable(ResilienceExpansion::Maximal),
elementTI.isCopyable(ResilienceExpansion::Maximal),
elementTI.isFixedSize(ResilienceExpansion::Minimal),
elementTI.isABIAccessible())
{
}
unsigned getExplosionSize() const override {
return Element.getExplosionSize() * ArraySize;
}
void loadAsCopy(IRGenFunction &IGF, Address addr,
Explosion &explosion) const override {
eachElementAddr(IGF, addr,
[&](Address elementAddr) {
Element.loadAsCopy(IGF, elementAddr, explosion);
});
}
void loadAsTake(IRGenFunction &IGF, Address addr,
Explosion &explosion) const override {
eachElementAddr(IGF, addr,
[&](Address elementAddr) {
Element.loadAsTake(IGF, elementAddr, explosion);
});
}
void assign(IRGenFunction &IGF, Explosion &explosion, Address addr,
bool isOutlined, SILType T) const override {
auto eltTy = getElementSILType(IGF.IGM, T);
eachElementAddr(IGF, addr,
[&](Address elementAddr) {
Element.assign(IGF, explosion, elementAddr, isOutlined,
eltTy);
});
}
void initialize(IRGenFunction &IGF, Explosion &explosion, Address addr,
bool isOutlined) const override {
eachElementAddr(IGF, addr,
[&](Address elementAddr) {
Element.initialize(IGF, explosion, elementAddr, isOutlined);
});
}
void reexplode(Explosion &sourceExplosion,
Explosion &targetExplosion) const override {
eachElement([&]{
Element.reexplode(sourceExplosion, targetExplosion);
});
}
void copy(IRGenFunction &IGF,
Explosion &sourceExplosion,
Explosion &targetExplosion,
Atomicity atomicity) const override {
eachElement([&]{
Element.copy(IGF, sourceExplosion, targetExplosion, atomicity);
});
}
void consume(IRGenFunction &IGF, Explosion &explosion,
Atomicity atomicity,
SILType T) const override {
auto eltTy = getElementSILType(IGF.IGM, T);
eachElement([&]{
Element.consume(IGF, explosion, atomicity, eltTy);
});
}
void fixLifetime(IRGenFunction &IGF,
Explosion &explosion) const override {
eachElement([&]{
Element.fixLifetime(IGF, explosion);
});
}
template<typename Body>
void eachElementOffset(Body &&body) const {
for (unsigned i = 0; i < ArraySize; ++i) {
body(i * Element.getFixedStride().getValue());
}
}
void packIntoEnumPayload(IRGenModule &IGM,
IRBuilder &builder,
EnumPayload &payload,
Explosion &sourceExplosion,
unsigned offset) const override {
eachElementOffset([&](unsigned eltByteOffset){
Element.packIntoEnumPayload(IGM, builder, payload,
sourceExplosion,
offset + eltByteOffset * 8);
});
}
void unpackFromEnumPayload(IRGenFunction &IGF,
const EnumPayload &payload,
Explosion &targetExplosion,
unsigned offset) const override {
eachElementOffset([&](unsigned eltByteOffset){
Element.unpackFromEnumPayload(IGF, payload,
targetExplosion,
offset + eltByteOffset * 8);
});
}
void addToAggLowering(IRGenModule &IGM, SwiftAggLowering &lowering,
Size offset) const override {
eachElementOffset([&](unsigned eltByteOffset){
Element.addToAggLowering(IGM, lowering,
Size(offset.getValue() + eltByteOffset));
});
}
};
class FixedArrayTypeInfo final
: public FixedArrayTypeInfoBase<FixedTypeInfo>
{
public:
FixedArrayTypeInfo(uint64_t arraySize,
const FixedTypeInfo &elementTI)
: FixedArrayTypeInfoBase(arraySize, elementTI,
getArrayType(arraySize, elementTI),
getArraySize(arraySize, elementTI),
getArraySpareBits(arraySize, elementTI),
elementTI.getFixedAlignment(),
elementTI.isTriviallyDestroyable(ResilienceExpansion::Maximal),
elementTI.getBitwiseTakable(ResilienceExpansion::Maximal),
elementTI.isCopyable(ResilienceExpansion::Maximal),
elementTI.isFixedSize(ResilienceExpansion::Minimal),
elementTI.isABIAccessible())
{
}
};
// NOTE: This does not simply use WitnessSizedTypeInfo in order to avoid
// dependency on a Swift runtime for handling fixed-size arrays that are
// unspecialized in their size parameter only, so that embedded Swift can
// work with unspecialized integer parameters.
class NonFixedArrayTypeInfo final
: public ArrayTypeInfoBase<IndirectTypeInfo<NonFixedArrayTypeInfo, TypeInfo>,
TypeInfo> {
using super = ArrayTypeInfoBase<IndirectTypeInfo<NonFixedArrayTypeInfo, TypeInfo>,
TypeInfo>;
llvm::Value *getArraySize(IRGenFunction &IGF, SILType T) const override {
if (auto fixedSize = getFixedArraySize(T)) {
return llvm::ConstantInt::get(IGF.IGM.IntPtrTy, *fixedSize);
}
CanType sizeParam = T.castTo<BuiltinFixedArrayType>()->getSize();
auto arg = IGF.emitValueGenericRef(sizeParam);
auto zero = llvm::ConstantInt::get(IGF.IGM.IntPtrTy, 0);
auto isNegative = IGF.Builder.CreateICmpSLT(arg, zero);
return IGF.Builder.CreateSelect(isNegative, zero, arg);
}
std::optional<uint64_t> getFixedArraySize(SILType T) const override {
CanType sizeParam = T.castTo<BuiltinFixedArrayType>()->getSize();
if (auto integer = sizeParam->getAs<IntegerType>()) {
if (integer->getValue().isNonNegative()) {
return integer->getValue().getLimitedValue();
}
}
return std::nullopt;
}
public:
NonFixedArrayTypeInfo(llvm::Type *opaqueTy,
const TypeInfo &Element)
: super(Element,
opaqueTy, Element.getBestKnownAlignment(),
Element.isTriviallyDestroyable(ResilienceExpansion::Maximal),
Element.getBitwiseTakable(ResilienceExpansion::Maximal),
Element.isCopyable(ResilienceExpansion::Maximal),
IsNotFixedSize,
Element.isABIAccessible(),
SpecialTypeInfoKind::None)
{}
llvm::Value *getSize(IRGenFunction &IGF, SILType T) const override {
auto elementStride
= Element.getStride(IGF, getElementSILType(IGF.IGM, T));
return IGF.Builder.CreateMul(elementStride, getArraySize(IGF, T));
}
llvm::Value *getAlignmentMask(IRGenFunction &IGF,
SILType T) const override {
return Element.getAlignmentMask(IGF, getElementSILType(IGF.IGM, T));
}
llvm::Value *getStride(IRGenFunction &IGF, SILType T) const override {
return getSize(IGF, T);
}
llvm::Value *getIsTriviallyDestroyable(IRGenFunction &IGF,
SILType T) const override {
return Element.getIsTriviallyDestroyable(IGF,
getElementSILType(IGF.IGM, T));
}
llvm::Value *getIsBitwiseTakable(IRGenFunction &IGF,
SILType T) const override {
return Element.getIsBitwiseTakable(IGF,
getElementSILType(IGF.IGM, T));
}
llvm::Value *isDynamicallyPackedInline(IRGenFunction &IGF,
SILType T) const override {
auto startBB = IGF.Builder.GetInsertBlock();
auto no = llvm::ConstantInt::getBool(IGF.IGM.getLLVMContext(),
false);
// Prefetch the necessary info from the element type info.
auto isBT = getIsBitwiseTakable(IGF, T);
auto size = getSize(IGF, T);
auto align = getAlignmentMask(IGF, T);
auto endBB = IGF.createBasicBlock("array_is_packed_inline");
IGF.Builder.SetInsertPoint(endBB);
auto result = IGF.Builder.CreatePHI(IGF.IGM.Int1Ty, 3);
IGF.Builder.SetInsertPoint(startBB);
// packed inline if the payload is bitwise-takable...
auto isBT_BB = IGF.createBasicBlock("array_is_bt");
IGF.Builder.CreateCondBr(isBT, isBT_BB, endBB);
result->addIncoming(no, startBB);
IGF.Builder.emitBlock(isBT_BB);
// ...size fits the fixed-size buffer...
auto bufferSize = llvm::ConstantInt::get(IGF.IGM.IntPtrTy,
getFixedBufferSize(IGF.IGM).getValue());
auto sizeFits = IGF.Builder.CreateICmpULE(size, bufferSize);
auto sizeFitsBB = IGF.createBasicBlock("array_size_fits");
IGF.Builder.CreateCondBr(sizeFits, sizeFitsBB, endBB);
result->addIncoming(no, isBT_BB);
IGF.Builder.emitBlock(sizeFitsBB);
// ...and so does alignment
auto bufferAlign = llvm::ConstantInt::get(IGF.IGM.IntPtrTy,
getFixedBufferAlignment(IGF.IGM).getMaskValue());
auto alignFits = IGF.Builder.CreateICmpULE(align, bufferAlign);
IGF.Builder.CreateBr(endBB);
result->addIncoming(alignFits, sizeFitsBB);
IGF.Builder.emitBlock(endBB);
return result;
}
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
return Element.mayHaveExtraInhabitants(IGM);
}
llvm::Constant *getStaticSize(IRGenModule &IGM) const override {
return nullptr;
}
llvm::Constant *getStaticAlignmentMask(IRGenModule &IGM) const override {
return nullptr;
}
llvm::Constant *getStaticStride(IRGenModule &IGM) const override {
return nullptr;
}
StackAddress allocateStack(IRGenFunction &IGF, SILType T,
const llvm::Twine &name) const override {
// Allocate memory on the stack.
auto alloca = IGF.emitDynamicAlloca(T, name);
IGF.Builder.CreateLifetimeStart(alloca.getAddressPointer());
return alloca.withAddress(getAddressForPointer(alloca.getAddressPointer()));
}
void deallocateStack(IRGenFunction &IGF, StackAddress stackAddress,
SILType T) const override {
IGF.Builder.CreateLifetimeEnd(stackAddress.getAddress().getAddress());
IGF.emitDeallocateDynamicAlloca(stackAddress);
}
void destroyStack(IRGenFunction &IGF, StackAddress stackAddress, SILType T,
bool isOutlined) const override {
emitDestroyCall(IGF, T, stackAddress.getAddress());
deallocateStack(IGF, stackAddress, T);
}
TypeLayoutEntry *
buildTypeLayoutEntry(IRGenModule &IGM,
SILType T,
bool useStructLayouts) const override {
return IGM.typeLayoutCache.getOrCreateResilientEntry(T);
}
llvm::Value *getEnumTagSinglePayload(IRGenFunction &IGF,
llvm::Value *numEmptyCases,
Address arrayAddr,
SILType arrayType,
bool isOutlined) const override {
// take extra inhabitants from the first element
auto firstElementAddr
= IGF.Builder.CreateElementBitCast(arrayAddr, Element.getStorageType());
return Element.getEnumTagSinglePayload(IGF,
numEmptyCases,
firstElementAddr,
getElementSILType(IGF.IGM, arrayType),
isOutlined);
}
void storeEnumTagSinglePayload(IRGenFunction &IGF,
llvm::Value *index,
llvm::Value *numEmptyCases,
Address arrayAddr,
SILType arrayType,
bool isOutlined) const override {
// take extra inhabitants from the first element
auto firstElementAddr
= IGF.Builder.CreateElementBitCast(arrayAddr, Element.getStorageType());
return Element.storeEnumTagSinglePayload(IGF,
index,
numEmptyCases,
firstElementAddr,
getElementSILType(IGF.IGM, arrayType),
isOutlined);
}
};
const TypeInfo *
TypeConverter::convertBuiltinFixedArrayType(BuiltinFixedArrayType *T) {
// Most of our layout properties come from the element type.
auto &elementTI = IGM.getTypeInfoForUnlowered(AbstractionPattern::getOpaque(),
T->getElementType());
// ...unless the array size is not fixed, then the array layout is never
// fixed.
auto fixedSize = T->getFixedInhabitedSize();
// Statically zero or negative-sized array types are empty.
if (fixedSize == 0 || T->isFixedNegativeSize()) {
return &getEmptyTypeInfo();
}
if (!fixedSize.has_value() || !elementTI.isFixedSize()) {
return new NonFixedArrayTypeInfo(IGM.OpaqueTy, elementTI);
}
if (*fixedSize <= BuiltinFixedArrayType::MaximumLoadableSize) {
if (auto *loadableTI = dyn_cast<LoadableTypeInfo>(&elementTI)) {
return new LoadableArrayTypeInfo(fixedSize.value(), *loadableTI);
}
}
return new FixedArrayTypeInfo(fixedSize.value(),
*cast<FixedTypeInfo>(&elementTI));
}