mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This PR is another attempt at landing #76903. The changes compared to the original PR: * Instead of increasing the size of SILDeclRef, store the necessary type information in a side channel using withClosureTypeInfo. * Rely on SGFContext to get the right ClangType * Extend BridgingConversion with an AbstractionPattern to store the original clang type. * The PR above introduced a crash during indexing system modules that references foreign types coming from modules imported as implementation only. These entities are implementation details so they do not need to be included during serialization. This PR adds a test and adds logic to exclude such clang types in the serialization process. rdar://131321096&141786724
1981 lines
77 KiB
C++
1981 lines
77 KiB
C++
//===--- SILGenConvert.cpp - Type Conversion Routines ---------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SILGen.h"
|
|
#include "ArgumentSource.h"
|
|
#include "Conversion.h"
|
|
#include "Initialization.h"
|
|
#include "LValue.h"
|
|
#include "RValue.h"
|
|
#include "Scope.h"
|
|
#include "SwitchEnumBuilder.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/ConformanceLookup.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/ProtocolConformance.h"
|
|
#include "swift/AST/SubstitutionMap.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/Basic/SourceManager.h"
|
|
#include "swift/Basic/type_traits.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/TypeLowering.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace swift;
|
|
using namespace Lowering;
|
|
|
|
// FIXME: With some changes to their callers, all of the below functions
|
|
// could be re-worked to use emitInjectEnum().
|
|
ManagedValue
|
|
SILGenFunction::emitInjectOptional(SILLocation loc,
|
|
const TypeLowering &optTL,
|
|
SGFContext ctxt,
|
|
llvm::function_ref<ManagedValue(SGFContext)> generator) {
|
|
SILType optTy = optTL.getLoweredType();
|
|
SILType objectTy = optTy.getOptionalObjectType();
|
|
assert(objectTy && "expected type was not optional");
|
|
|
|
auto someDecl = getASTContext().getOptionalSomeDecl();
|
|
|
|
// If the value is loadable, just emit and wrap.
|
|
// TODO: honor +0 contexts?
|
|
if (optTL.isLoadable() || !silConv.useLoweredAddresses()) {
|
|
ManagedValue objectResult = generator(SGFContext());
|
|
return B.createEnum(loc, objectResult, someDecl, optTy);
|
|
}
|
|
|
|
// Otherwise it's address-only; try to avoid spurious copies by
|
|
// evaluating into the context.
|
|
|
|
// Prepare a buffer for the object value.
|
|
return B.bufferForExpr(
|
|
loc, optTy.getObjectType(), optTL, ctxt,
|
|
[&](SILValue optBuf) {
|
|
auto objectBuf = B.createInitEnumDataAddr(loc, optBuf, someDecl, objectTy);
|
|
|
|
// Evaluate the value in-place into that buffer.
|
|
TemporaryInitialization init(objectBuf, CleanupHandle::invalid());
|
|
ManagedValue objectResult = generator(SGFContext(&init));
|
|
if (!objectResult.isInContext()) {
|
|
objectResult.ensurePlusOne(*this, loc)
|
|
.forwardInto(*this, loc, objectBuf);
|
|
}
|
|
|
|
// Finalize the outer optional buffer.
|
|
B.createInjectEnumAddr(loc, optBuf, someDecl);
|
|
});
|
|
}
|
|
|
|
void SILGenFunction::emitInjectOptionalValueInto(SILLocation loc,
|
|
ArgumentSource &&value,
|
|
SILValue dest,
|
|
const TypeLowering &optTL) {
|
|
SILType optType = optTL.getLoweredType();
|
|
assert(dest->getType() == optType.getAddressType());
|
|
auto loweredPayloadTy = optType.getOptionalObjectType();
|
|
assert(loweredPayloadTy);
|
|
|
|
// Project out the payload area.
|
|
auto someDecl = getASTContext().getOptionalSomeDecl();
|
|
auto destPayload =
|
|
B.createInitEnumDataAddr(loc, dest, someDecl,
|
|
loweredPayloadTy.getAddressType());
|
|
|
|
// Emit the value into the payload area.
|
|
TemporaryInitialization emitInto(destPayload, CleanupHandle::invalid());
|
|
std::move(value).forwardInto(*this, &emitInto);
|
|
|
|
// Inject the tag.
|
|
B.createInjectEnumAddr(loc, dest, someDecl);
|
|
}
|
|
|
|
void SILGenFunction::emitInjectOptionalNothingInto(SILLocation loc,
|
|
SILValue dest,
|
|
const TypeLowering &optTL) {
|
|
assert(optTL.getLoweredType().getOptionalObjectType());
|
|
|
|
B.createInjectEnumAddr(loc, dest, getASTContext().getOptionalNoneDecl());
|
|
}
|
|
|
|
/// Return a value for an optional ".None" of the specified type. This only
|
|
/// works for loadable enum types.
|
|
SILValue SILGenFunction::getOptionalNoneValue(SILLocation loc,
|
|
const TypeLowering &optTL) {
|
|
assert((optTL.isLoadable() || !silConv.useLoweredAddresses()) &&
|
|
"Address-only optionals cannot use this");
|
|
assert(optTL.getLoweredType().getOptionalObjectType());
|
|
|
|
return B.createEnum(loc, SILValue(), getASTContext().getOptionalNoneDecl(),
|
|
optTL.getLoweredType());
|
|
}
|
|
|
|
/// Return a value for an optional ".Some(x)" of the specified type. This only
|
|
/// works for loadable enum types.
|
|
ManagedValue SILGenFunction::
|
|
getOptionalSomeValue(SILLocation loc, ManagedValue value,
|
|
const TypeLowering &optTL) {
|
|
assert((optTL.isLoadable() || !silConv.useLoweredAddresses()) &&
|
|
"Address-only optionals cannot use this");
|
|
SILType optType = optTL.getLoweredType();
|
|
auto formalOptType = optType.getASTType();
|
|
(void)formalOptType;
|
|
|
|
assert(formalOptType.getOptionalObjectType());
|
|
auto someDecl = getASTContext().getOptionalSomeDecl();
|
|
|
|
return B.createEnum(loc, value, someDecl, optTL.getLoweredType());
|
|
}
|
|
|
|
auto SILGenFunction::emitSourceLocationArgs(SourceLoc sourceLoc,
|
|
SILLocation emitLoc)
|
|
-> SourceLocArgs {
|
|
auto &ctx = getASTContext();
|
|
|
|
std::string filename = "";
|
|
unsigned line = 0;
|
|
unsigned column = 0;
|
|
if (sourceLoc.isValid()) {
|
|
filename = getMagicFileIDString(sourceLoc);
|
|
std::tie(line, column) =
|
|
ctx.SourceMgr.getPresumedLineAndColumnForLoc(sourceLoc);
|
|
}
|
|
|
|
bool isASCII = true;
|
|
for (unsigned char c : filename) {
|
|
if (c > 127) {
|
|
isASCII = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
auto wordTy = SILType::getBuiltinWordType(ctx);
|
|
auto i1Ty = SILType::getBuiltinIntegerType(1, ctx);
|
|
|
|
SourceLocArgs result;
|
|
SILValue literal = B.createStringLiteral(emitLoc, StringRef(filename),
|
|
StringLiteralInst::Encoding::UTF8);
|
|
result.filenameStartPointer =
|
|
ManagedValue::forObjectRValueWithoutOwnership(literal);
|
|
// File length
|
|
literal = B.createIntegerLiteral(emitLoc, wordTy, filename.size());
|
|
result.filenameLength =
|
|
ManagedValue::forObjectRValueWithoutOwnership(literal);
|
|
// File is ascii
|
|
literal = B.createIntegerLiteral(emitLoc, i1Ty, isASCII);
|
|
result.filenameIsAscii =
|
|
ManagedValue::forObjectRValueWithoutOwnership(literal);
|
|
// Line
|
|
literal = B.createIntegerLiteral(emitLoc, wordTy, line);
|
|
result.line = ManagedValue::forObjectRValueWithoutOwnership(literal);
|
|
// Column
|
|
literal = B.createIntegerLiteral(emitLoc, wordTy, column);
|
|
result.column = ManagedValue::forObjectRValueWithoutOwnership(literal);
|
|
|
|
return result;
|
|
}
|
|
|
|
ManagedValue
|
|
SILGenFunction::emitPreconditionOptionalHasValue(SILLocation loc,
|
|
ManagedValue optional,
|
|
bool isImplicitUnwrap) {
|
|
// Generate code to check if the optional is present, and if not, abort with a message
|
|
// (provided by the stdlib).
|
|
SILBasicBlock *contBB = createBasicBlock();
|
|
SILBasicBlock *failBB = createBasicBlock();
|
|
|
|
bool hadCleanup = optional.hasCleanup();
|
|
bool hadLValue = optional.isLValue();
|
|
|
|
auto someDecl = getASTContext().getOptionalSomeDecl();
|
|
auto noneDecl = getASTContext().getOptionalNoneDecl();
|
|
|
|
bool isAddress = optional.getType().isAddress();
|
|
bool isBorrow = !optional.isPlusOneOrTrivial(*this);
|
|
SwitchEnumInst *switchEnum = nullptr;
|
|
if (isAddress) {
|
|
// We forward in the creation routine for
|
|
// unchecked_take_enum_data_addr. switch_enum_addr is a +0 operation.
|
|
B.createSwitchEnumAddr(loc, optional.getValue(),
|
|
/*defaultDest*/ nullptr,
|
|
{{someDecl, contBB}, {noneDecl, failBB}});
|
|
} else if (isBorrow) {
|
|
hadCleanup = false;
|
|
hadLValue = false;
|
|
switchEnum = B.createSwitchEnum(loc, optional.getValue(),
|
|
/*defaultDest*/ nullptr,
|
|
{{someDecl, contBB}, {noneDecl, failBB}});
|
|
} else {
|
|
optional = optional.ensurePlusOne(*this, loc);
|
|
hadCleanup = true;
|
|
hadLValue = false;
|
|
switchEnum = B.createSwitchEnum(loc, optional.forward(*this),
|
|
/*defaultDest*/ nullptr,
|
|
{{someDecl, contBB}, {noneDecl, failBB}});
|
|
}
|
|
B.emitBlock(failBB);
|
|
|
|
// Call the standard library implementation of _diagnoseUnexpectedNilOptional.
|
|
if (auto diagnoseFailure =
|
|
getASTContext().getDiagnoseUnexpectedNilOptional()) {
|
|
auto args = emitSourceLocationArgs(loc.getSourceLoc(), loc);
|
|
|
|
auto i1Ty = SILType::getBuiltinIntegerType(1, getASTContext());
|
|
auto isImplicitUnwrapLiteral =
|
|
B.createIntegerLiteral(loc, i1Ty, isImplicitUnwrap);
|
|
auto isImplicitUnwrapValue =
|
|
ManagedValue::forObjectRValueWithoutOwnership(isImplicitUnwrapLiteral);
|
|
|
|
emitApplyOfLibraryIntrinsic(loc, diagnoseFailure, SubstitutionMap(),
|
|
{
|
|
args.filenameStartPointer,
|
|
args.filenameLength,
|
|
args.filenameIsAscii,
|
|
args.line,
|
|
isImplicitUnwrapValue
|
|
},
|
|
SGFContext());
|
|
}
|
|
|
|
B.createUnreachable(ArtificialUnreachableLocation());
|
|
B.clearInsertionPoint();
|
|
B.emitBlock(contBB);
|
|
|
|
ManagedValue result;
|
|
if (isAddress) {
|
|
SILType payloadType = optional.getType().getOptionalObjectType();
|
|
result =
|
|
B.createUncheckedTakeEnumDataAddr(loc, optional, someDecl, payloadType);
|
|
} else {
|
|
result = B.createOptionalSomeResult(switchEnum);
|
|
}
|
|
|
|
if (hadCleanup) {
|
|
return result;
|
|
}
|
|
|
|
if (hadLValue) {
|
|
return ManagedValue::forLValue(result.forward(*this));
|
|
}
|
|
|
|
return ManagedValue::forBorrowedRValue(result.forward(*this));
|
|
}
|
|
|
|
SILValue SILGenFunction::emitDoesOptionalHaveValue(SILLocation loc,
|
|
SILValue addrOrValue) {
|
|
auto boolTy = SILType::getBuiltinIntegerType(1, getASTContext());
|
|
SILValue yes = B.createIntegerLiteral(loc, boolTy, 1);
|
|
SILValue no = B.createIntegerLiteral(loc, boolTy, 0);
|
|
auto someDecl = getASTContext().getOptionalSomeDecl();
|
|
|
|
if (addrOrValue->getType().isAddress())
|
|
return B.createSelectEnumAddr(loc, addrOrValue, boolTy, no,
|
|
std::make_pair(someDecl, yes));
|
|
return B.createSelectEnum(loc, addrOrValue, boolTy, no,
|
|
std::make_pair(someDecl, yes));
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitCheckedGetOptionalValueFrom(SILLocation loc,
|
|
ManagedValue src,
|
|
bool isImplicitUnwrap,
|
|
const TypeLowering &optTL,
|
|
SGFContext C) {
|
|
// TODO: Make this take optTL.
|
|
return emitPreconditionOptionalHasValue(loc, src, isImplicitUnwrap);
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitUncheckedGetOptionalValueFrom(
|
|
SILLocation loc, ManagedValue addrOrValue, const TypeLowering &optTL,
|
|
SGFContext C) {
|
|
SILType origPayloadTy = addrOrValue.getType().getOptionalObjectType();
|
|
|
|
auto someDecl = getASTContext().getOptionalSomeDecl();
|
|
|
|
// Take the payload from the optional.
|
|
if (!addrOrValue.getType().isAddress()) {
|
|
return B.createUncheckedEnumData(loc, addrOrValue, someDecl);
|
|
}
|
|
|
|
// Cheat a bit in the +0 case--UncheckedTakeEnumData will never actually
|
|
// invalidate an Optional enum value. This is specific to optionals.
|
|
ManagedValue payload = B.createUncheckedTakeEnumDataAddr(
|
|
loc, addrOrValue, someDecl, origPayloadTy);
|
|
if (!optTL.isLoadable())
|
|
return payload;
|
|
|
|
// If we do not have a cleanup on our address, use a load_borrow.
|
|
if (!payload.hasCleanup()) {
|
|
return B.createLoadBorrow(loc, payload);
|
|
}
|
|
|
|
// Otherwise, perform a load take.
|
|
return B.createLoadTake(loc, payload);
|
|
}
|
|
|
|
ManagedValue
|
|
SILGenFunction::emitOptionalSome(SILLocation loc, SILType optTy,
|
|
ValueProducerRef produceValue,
|
|
SGFContext C) {
|
|
// If we're emitting into a conversion, try to peephole the
|
|
// injection into it.
|
|
if (auto optInit = C.getAsConversion()) {
|
|
const auto &optConversion = optInit->getConversion();
|
|
|
|
auto adjustment = optConversion.adjustForInitialOptionalInjection();
|
|
|
|
// If the adjustment gives us a conversion that produces an optional
|
|
// value, that completely takes over emission. This generally happens
|
|
// only because of bridging.
|
|
if (adjustment.isInjection()) {
|
|
return optInit->emitWithAdjustedConversion(*this, loc,
|
|
adjustment.getInjectionConversion(),
|
|
produceValue);
|
|
|
|
// If the adjustment gives us a conversion that produces a non-optional
|
|
// value, we need to produce the value under that conversion and then
|
|
// inject that into an optional. We can do that by recursing. This
|
|
// will terminate because the recursive call to emitOptionalSome gets
|
|
// passed a strictly "smaller" context: the parent context of the
|
|
// converting context we were passed.
|
|
} else if (adjustment.isValue()) {
|
|
auto produceConvertedValue = [&](SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
SGFContext C) {
|
|
return SGF.emitConvertedRValue(loc, adjustment.getValueConversion(),
|
|
C, produceValue);
|
|
};
|
|
auto result = emitOptionalSome(loc, optConversion.getLoweredResultType(),
|
|
produceConvertedValue,
|
|
optInit->getFinalContext());
|
|
optInit->initWithConvertedValue(*this, loc, result);
|
|
optInit->finishInitialization(*this);
|
|
return ManagedValue::forInContext();
|
|
}
|
|
}
|
|
|
|
auto &optTL = getTypeLowering(optTy);
|
|
|
|
// If the type is loadable or we're not lowering address-only types
|
|
// in SILGen, use a simple scalar pattern.
|
|
if (!silConv.useLoweredAddresses() || optTL.isLoadable()) {
|
|
auto value = produceValue(*this, loc, SGFContext());
|
|
return getOptionalSomeValue(loc, value, optTL);
|
|
}
|
|
|
|
// Otherwise, emit into memory, preferably into an address from
|
|
// the context.
|
|
|
|
// Get an address to emit into.
|
|
SILValue optAddr = getBufferForExprResult(loc, optTy, C);
|
|
|
|
auto someDecl = getASTContext().getOptionalSomeDecl();
|
|
|
|
auto valueTy = optTy.getOptionalObjectType();
|
|
auto &valueTL = getTypeLowering(valueTy);
|
|
|
|
// Project the value buffer within the address.
|
|
SILValue valueAddr =
|
|
B.createInitEnumDataAddr(loc, optAddr, someDecl,
|
|
valueTy.getAddressType());
|
|
|
|
// Emit into the value buffer.
|
|
auto valueInit = useBufferAsTemporary(valueAddr, valueTL);
|
|
ManagedValue value = produceValue(*this, loc, SGFContext(valueInit.get()));
|
|
if (!value.isInContext()) {
|
|
valueInit->copyOrInitValueInto(*this, loc, value, /*isInit*/ true);
|
|
valueInit->finishInitialization(*this);
|
|
}
|
|
|
|
// Kill the cleanup on the value.
|
|
valueInit->getManagedAddress().forward(*this);
|
|
|
|
// Finish the optional.
|
|
B.createInjectEnumAddr(loc, optAddr, someDecl);
|
|
|
|
return manageBufferForExprResult(optAddr, optTL, C);
|
|
}
|
|
|
|
/// Emit an optional-to-optional transformation.
|
|
ManagedValue
|
|
SILGenFunction::emitOptionalToOptional(SILLocation loc,
|
|
ManagedValue input,
|
|
SILType resultTy,
|
|
ValueTransformRef transformValue,
|
|
SGFContext C) {
|
|
auto &Ctx = getASTContext();
|
|
|
|
// If the input is known to be 'none' just emit a 'none' value of the right
|
|
// result type right away.
|
|
auto &resultTL = getTypeLowering(resultTy);
|
|
|
|
if (auto *EI = dyn_cast<EnumInst>(input.getValue())) {
|
|
if (EI->getElement() == Ctx.getOptionalNoneDecl()) {
|
|
if (!(resultTL.isAddressOnly() && silConv.useLoweredAddresses())) {
|
|
SILValue none = B.createEnum(loc, SILValue(), EI->getElement(),
|
|
resultTy);
|
|
return emitManagedRValueWithCleanup(none);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Otherwise perform a dispatch.
|
|
auto contBB = createBasicBlock();
|
|
auto isNotPresentBB = createBasicBlock();
|
|
auto isPresentBB = createBasicBlock();
|
|
|
|
// All conversions happen at +1.
|
|
input = input.ensurePlusOne(*this, loc);
|
|
|
|
SwitchEnumBuilder SEBuilder(B, loc, input);
|
|
SILType noOptResultTy = resultTy.getOptionalObjectType();
|
|
assert(noOptResultTy);
|
|
|
|
// Create a temporary for the output optional.
|
|
//
|
|
// If the result is address-only, we need to return something in memory,
|
|
// otherwise the result is the BBArgument in the merge point.
|
|
// TODO: use the SGFContext passed in.
|
|
ManagedValue resultAddress;
|
|
bool addressOnly = resultTL.isAddressOnly() && silConv.useLoweredAddresses();
|
|
if (addressOnly) {
|
|
resultAddress = emitManagedBufferWithCleanup(
|
|
emitTemporaryAllocation(loc, resultTy), resultTL);
|
|
}
|
|
|
|
ValueOwnershipKind resultOwnership = OwnershipKind::Any;
|
|
SEBuilder.addOptionalSomeCase(
|
|
isPresentBB, contBB, [&](ManagedValue input, SwitchCaseFullExpr &&scope) {
|
|
// If we have an address only type, we want to match the old behavior of
|
|
// transforming the underlying type instead of the optional type. This
|
|
// ensures that we use the more efficient non-generic code paths when
|
|
// possible.
|
|
if (getTypeLowering(input.getType()).isAddressOnly() &&
|
|
silConv.useLoweredAddresses()) {
|
|
auto *someDecl = Ctx.getOptionalSomeDecl();
|
|
input = B.createUncheckedTakeEnumDataAddr(
|
|
loc, input, someDecl, input.getType().getOptionalObjectType());
|
|
}
|
|
|
|
ManagedValue result = transformValue(*this, loc, input, noOptResultTy,
|
|
SGFContext());
|
|
resultOwnership = result.getValue()->getOwnershipKind();
|
|
if (!addressOnly) {
|
|
SILValue some = B.createOptionalSome(loc, result).forward(*this);
|
|
return scope.exitAndBranch(loc, some);
|
|
}
|
|
|
|
RValue R(*this, loc, noOptResultTy.getASTType(), result);
|
|
ArgumentSource resultValueRV(loc, std::move(R));
|
|
emitInjectOptionalValueInto(loc, std::move(resultValueRV),
|
|
resultAddress.getValue(), resultTL);
|
|
return scope.exitAndBranch(loc);
|
|
});
|
|
|
|
SEBuilder.addOptionalNoneCase(
|
|
isNotPresentBB, contBB,
|
|
[&](ManagedValue input, SwitchCaseFullExpr &&scope) {
|
|
if (!addressOnly) {
|
|
SILValue none =
|
|
B.createManagedOptionalNone(loc, resultTy).forward(*this);
|
|
return scope.exitAndBranch(loc, none);
|
|
}
|
|
|
|
emitInjectOptionalNothingInto(loc, resultAddress.getValue(), resultTL);
|
|
return scope.exitAndBranch(loc);
|
|
});
|
|
|
|
std::move(SEBuilder).emit();
|
|
|
|
B.emitBlock(contBB);
|
|
if (addressOnly)
|
|
return resultAddress;
|
|
|
|
// This phi's ownership is derived from the transformed value's
|
|
// ownership, not the input ownership. Transformation can convert a value with
|
|
// no ownership to an owned value.
|
|
return B.createPhi(resultTL.getLoweredType(), resultOwnership);
|
|
}
|
|
|
|
SILGenFunction::OpaqueValueRAII::~OpaqueValueRAII() {
|
|
auto entry = Self.OpaqueValues.find(OpaqueValue);
|
|
assert(entry != Self.OpaqueValues.end());
|
|
Self.OpaqueValues.erase(entry);
|
|
}
|
|
|
|
RValue
|
|
SILGenFunction::emitPointerToPointer(SILLocation loc,
|
|
ManagedValue input,
|
|
CanType inputType,
|
|
CanType outputType,
|
|
SGFContext C) {
|
|
auto converter = getASTContext().getConvertPointerToPointerArgument();
|
|
|
|
auto origValue = input;
|
|
if (silConv.useLoweredAddresses()) {
|
|
// The generic function currently always requires indirection, but pointers
|
|
// are always loadable.
|
|
auto origBuf = emitTemporaryAllocation(loc, input.getType());
|
|
B.emitStoreValueOperation(loc, input.forward(*this), origBuf,
|
|
StoreOwnershipQualifier::Init);
|
|
origValue = emitManagedBufferWithCleanup(origBuf);
|
|
}
|
|
// Invoke the conversion intrinsic to convert to the destination type.
|
|
SmallVector<Type, 2> replacementTypes;
|
|
replacementTypes.push_back(inputType);
|
|
replacementTypes.push_back(outputType);
|
|
|
|
auto genericSig = converter->getGenericSignature();
|
|
auto subMap =
|
|
SubstitutionMap::get(genericSig, replacementTypes,
|
|
LookUpConformanceInModule());
|
|
|
|
return emitApplyOfLibraryIntrinsic(loc, converter, subMap, origValue, C);
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
/// This is an initialization for an address-only existential in memory.
|
|
class ExistentialInitialization final : public SingleBufferInitialization {
|
|
SILValue existential;
|
|
CanType concreteFormalType;
|
|
ArrayRef<ProtocolConformanceRef> conformances;
|
|
ExistentialRepresentation repr;
|
|
|
|
// Initialized lazily when the address for initialization is demanded.
|
|
SILValue concreteBuffer;
|
|
CleanupHandle deinitExistentialCleanup;
|
|
public:
|
|
/// \param existential The existential container
|
|
/// \param concreteFormalType Unlowered AST type of value
|
|
/// \param conformances Conformances for concrete type to existential's
|
|
/// protocols
|
|
ExistentialInitialization(SILGenFunction &SGF,
|
|
SILValue existential,
|
|
CanType concreteFormalType,
|
|
ArrayRef<ProtocolConformanceRef> conformances,
|
|
ExistentialRepresentation repr)
|
|
: existential(existential),
|
|
concreteFormalType(concreteFormalType),
|
|
conformances(conformances),
|
|
repr(repr)
|
|
{
|
|
assert(existential->getType().isAddress());
|
|
|
|
// Create a cleanup to deallocate an allocated but uninitialized concrete
|
|
// type buffer.
|
|
// It won't be activated until that buffer is formed later, though.
|
|
deinitExistentialCleanup =
|
|
SGF.enterDeinitExistentialCleanup(CleanupState::Dormant,
|
|
existential, concreteFormalType, repr);
|
|
|
|
}
|
|
|
|
SILValue getAddressForInPlaceInitialization(SILGenFunction &SGF,
|
|
SILLocation loc) override {
|
|
// Create the buffer when needed, because in some cases the type may
|
|
// be the opened type from another existential that hasn't been opened
|
|
// at the point the existential destination was formed.
|
|
assert(!concreteBuffer && "concrete buffer already formed?!");
|
|
|
|
auto concreteLoweredType =
|
|
SGF.getLoweredType(AbstractionPattern::getOpaque(), concreteFormalType);
|
|
|
|
switch (repr) {
|
|
case ExistentialRepresentation::Opaque: {
|
|
concreteBuffer = SGF.B.createInitExistentialAddr(loc, existential,
|
|
concreteFormalType,
|
|
concreteLoweredType.getAddressType(),
|
|
conformances);
|
|
break;
|
|
}
|
|
case ExistentialRepresentation::Boxed: {
|
|
auto box = SGF.B.createAllocExistentialBox(loc,
|
|
existential->getType().getObjectType(),
|
|
concreteFormalType,
|
|
conformances);
|
|
concreteBuffer = SGF.B.createProjectExistentialBox(loc,
|
|
concreteLoweredType.getAddressType(),
|
|
box);
|
|
SGF.B.createStore(loc, box, existential,
|
|
StoreOwnershipQualifier::Init);
|
|
break;
|
|
}
|
|
case ExistentialRepresentation::Class:
|
|
case ExistentialRepresentation::Metatype:
|
|
case ExistentialRepresentation::None:
|
|
llvm_unreachable("not supported");
|
|
}
|
|
|
|
// Activate the cleanup to deallocate the buffer we just allocated, should
|
|
SGF.Cleanups.setCleanupState(deinitExistentialCleanup,
|
|
CleanupState::Active);
|
|
|
|
return concreteBuffer;
|
|
}
|
|
|
|
bool isInPlaceInitializationOfGlobal() const override {
|
|
return isa_and_nonnull<GlobalAddrInst>(existential);
|
|
}
|
|
|
|
void finishInitialization(SILGenFunction &SGF) override {
|
|
SingleBufferInitialization::finishInitialization(SGF);
|
|
// We've fully initialized the existential by this point, so we can
|
|
// retire the partial cleanup.
|
|
SGF.Cleanups.setCleanupState(deinitExistentialCleanup,
|
|
CleanupState::Dead);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
ManagedValue SILGenFunction::emitExistentialErasure(
|
|
SILLocation loc,
|
|
CanType concreteFormalType,
|
|
const TypeLowering &concreteTL,
|
|
const TypeLowering &existentialTL,
|
|
ArrayRef<ProtocolConformanceRef> conformances,
|
|
SGFContext C,
|
|
llvm::function_ref<ManagedValue (SGFContext)> F,
|
|
bool allowEmbeddedNSError) {
|
|
// Mark the needed conformances as used.
|
|
for (auto conformance : conformances)
|
|
SGM.useConformance(conformance);
|
|
|
|
// If we're erasing to the 'Error' type, we might be able to get an NSError
|
|
// representation more efficiently.
|
|
auto &ctx = getASTContext();
|
|
auto *nsErrorDecl = ctx.getNSErrorDecl();
|
|
if (ctx.LangOpts.EnableObjCInterop && conformances.size() == 1 &&
|
|
conformances[0].getProtocol() == ctx.getErrorDecl() &&
|
|
nsErrorDecl && referenceAllowed(nsErrorDecl)) {
|
|
// If the concrete type is NSError or a subclass thereof, just erase it
|
|
// directly.
|
|
auto nsErrorType = ctx.getNSErrorType()->getCanonicalType();
|
|
if (nsErrorType->isExactSuperclassOf(concreteFormalType)) {
|
|
ManagedValue nsError = F(SGFContext());
|
|
if (nsErrorType != concreteFormalType) {
|
|
nsError = B.createUpcast(loc, nsError, getLoweredType(nsErrorType));
|
|
}
|
|
return emitBridgedToNativeError(loc, nsError);
|
|
}
|
|
|
|
// If the concrete type is known to conform to _BridgedStoredNSError,
|
|
// call the _nsError witness getter to extract the NSError directly,
|
|
// then just erase the NSError.
|
|
auto storedNSErrorConformance =
|
|
SGM.getConformanceToBridgedStoredNSError(loc, concreteFormalType);
|
|
if (storedNSErrorConformance) {
|
|
auto nsErrorVar = SGM.getNSErrorRequirement(loc);
|
|
if (!nsErrorVar) return emitUndef(existentialTL.getLoweredType());
|
|
|
|
SubstitutionMap nsErrorVarSubstitutions;
|
|
|
|
// Devirtualize. Maybe this should be done implicitly by
|
|
// emitPropertyLValue?
|
|
if (storedNSErrorConformance.isConcrete()) {
|
|
if (auto normal = dyn_cast<NormalProtocolConformance>(
|
|
storedNSErrorConformance.getConcrete())) {
|
|
if (auto witnessVar = normal->getWitness(nsErrorVar)) {
|
|
nsErrorVar = cast<VarDecl>(witnessVar.getDecl());
|
|
nsErrorVarSubstitutions = witnessVar.getSubstitutions();
|
|
}
|
|
}
|
|
}
|
|
|
|
ManagedValue nativeError = F(SGFContext());
|
|
|
|
FormalEvaluationScope writebackScope(*this);
|
|
ManagedValue nsError =
|
|
emitRValueForStorageLoad(
|
|
loc, nativeError, concreteFormalType,
|
|
/*super*/ false, nsErrorVar, PreparedArguments(),
|
|
nsErrorVarSubstitutions,
|
|
AccessSemantics::Ordinary, nsErrorType, SGFContext())
|
|
.getAsSingleValue(*this, loc);
|
|
|
|
return emitBridgedToNativeError(loc, nsError);
|
|
}
|
|
|
|
// Otherwise, if it's an archetype, try calling the _getEmbeddedNSError()
|
|
// witness to try to dig out the embedded NSError. But don't do this
|
|
// when we're being called recursively.
|
|
if (isa<ArchetypeType>(concreteFormalType) && allowEmbeddedNSError) {
|
|
auto contBB = createBasicBlock();
|
|
auto isNotPresentBB = createBasicBlock();
|
|
auto isPresentBB = createBasicBlock();
|
|
|
|
// Call swift_stdlib_getErrorEmbeddedNSError to attempt to extract an
|
|
// NSError from the value.
|
|
auto getEmbeddedNSErrorFn = SGM.getGetErrorEmbeddedNSError(loc);
|
|
if (!getEmbeddedNSErrorFn)
|
|
return emitUndef(existentialTL.getLoweredType());
|
|
|
|
auto getEmbeddedNSErrorSubstitutions =
|
|
SubstitutionMap::getProtocolSubstitutions(ctx.getErrorDecl(),
|
|
concreteFormalType,
|
|
conformances[0]);
|
|
|
|
ManagedValue concreteValue = F(SGFContext());
|
|
ManagedValue potentialNSError =
|
|
emitApplyOfLibraryIntrinsic(loc,
|
|
getEmbeddedNSErrorFn,
|
|
getEmbeddedNSErrorSubstitutions,
|
|
{ concreteValue.copy(*this, loc) },
|
|
SGFContext())
|
|
.getAsSingleValue(*this, loc);
|
|
|
|
// We're going to consume 'concreteValue' in exactly one branch,
|
|
// so kill its cleanup now and recreate it on both branches.
|
|
(void) concreteValue.forward(*this);
|
|
|
|
// Check whether we got an NSError back.
|
|
std::pair<EnumElementDecl*, SILBasicBlock*> cases[] = {
|
|
{ ctx.getOptionalSomeDecl(), isPresentBB },
|
|
{ ctx.getOptionalNoneDecl(), isNotPresentBB }
|
|
};
|
|
auto *switchEnum =
|
|
B.createSwitchEnum(loc, potentialNSError.forward(*this),
|
|
/*default*/ nullptr, cases);
|
|
|
|
// If we did get an NSError, emit the existential erasure from that
|
|
// NSError.
|
|
B.emitBlock(isPresentBB);
|
|
SILValue branchArg;
|
|
{
|
|
// Don't allow cleanups to escape the conditional block.
|
|
FullExpr presentScope(Cleanups, CleanupLocation(loc));
|
|
enterDestroyCleanup(concreteValue.getValue());
|
|
|
|
// Receive the error value. It's typed as an 'AnyObject' for
|
|
// layering reasons, so perform an unchecked cast down to NSError.
|
|
auto nsError = B.createOptionalSomeResult(switchEnum);
|
|
nsError = B.createUncheckedRefCast(loc, nsError,
|
|
getLoweredType(nsErrorType));
|
|
|
|
branchArg = emitBridgedToNativeError(loc, nsError).forward(*this);
|
|
}
|
|
B.createBranch(loc, contBB, branchArg);
|
|
|
|
// If we did not get an NSError, just directly emit the existential.
|
|
// Since this is a recursive call, make sure we don't end up in this
|
|
// path again.
|
|
B.emitBlock(isNotPresentBB);
|
|
{
|
|
FullExpr presentScope(Cleanups, CleanupLocation(loc));
|
|
concreteValue = emitManagedRValueWithCleanup(concreteValue.getValue());
|
|
branchArg = emitExistentialErasure(loc, concreteFormalType, concreteTL,
|
|
existentialTL, conformances,
|
|
SGFContext(),
|
|
[&](SGFContext C) {
|
|
return concreteValue;
|
|
},
|
|
/*allowEmbeddedNSError=*/false)
|
|
.forward(*this);
|
|
}
|
|
B.createBranch(loc, contBB, branchArg);
|
|
|
|
// Continue.
|
|
B.emitBlock(contBB);
|
|
|
|
SILValue existentialResult = contBB->createPhiArgument(
|
|
existentialTL.getLoweredType(), OwnershipKind::Owned);
|
|
return emitManagedRValueWithCleanup(existentialResult, existentialTL);
|
|
}
|
|
}
|
|
|
|
switch (existentialTL.getLoweredType().getObjectType()
|
|
.getPreferredExistentialRepresentation(concreteFormalType)) {
|
|
case ExistentialRepresentation::None:
|
|
llvm_unreachable("not an existential type");
|
|
case ExistentialRepresentation::Metatype: {
|
|
assert(existentialTL.isLoadable());
|
|
|
|
SILValue metatype = F(SGFContext()).getUnmanagedValue();
|
|
assert(metatype->getType().castTo<AnyMetatypeType>()->getRepresentation()
|
|
== MetatypeRepresentation::Thick);
|
|
|
|
auto upcast =
|
|
B.createInitExistentialMetatype(loc, metatype,
|
|
existentialTL.getLoweredType(),
|
|
conformances);
|
|
return ManagedValue::forObjectRValueWithoutOwnership(upcast);
|
|
}
|
|
case ExistentialRepresentation::Class: {
|
|
assert(existentialTL.isLoadable());
|
|
|
|
ManagedValue sub = F(SGFContext());
|
|
assert(concreteFormalType->isBridgeableObjectType());
|
|
return B.createInitExistentialRef(loc, existentialTL.getLoweredType(),
|
|
concreteFormalType, sub, conformances);
|
|
}
|
|
case ExistentialRepresentation::Boxed: {
|
|
// We defer allocation of the box to when the address is demanded.
|
|
// Create a stack slot to hold the box once it's allocated.
|
|
SILValue boxValue;
|
|
auto buf = B.bufferForExpr(
|
|
loc, existentialTL.getLoweredType(), existentialTL, C,
|
|
[&](SILValue existential) {
|
|
// Initialize the existential in-place.
|
|
ExistentialInitialization init(*this, existential,
|
|
concreteFormalType,
|
|
conformances,
|
|
ExistentialRepresentation::Boxed);
|
|
ManagedValue mv = F(SGFContext(&init));
|
|
if (!mv.isInContext()) {
|
|
init.copyOrInitValueInto(*this, loc, mv.ensurePlusOne(*this, loc),
|
|
/*init*/ true);
|
|
init.finishInitialization(*this);
|
|
}
|
|
});
|
|
|
|
if (buf.isInContext()) {
|
|
return buf;
|
|
}
|
|
|
|
auto value = B.createLoad(loc, buf.forward(*this),
|
|
LoadOwnershipQualifier::Take);
|
|
return emitManagedRValueWithCleanup(value);
|
|
}
|
|
case ExistentialRepresentation::Opaque: {
|
|
|
|
// If the concrete value is a pseudogeneric archetype, first erase it to
|
|
// its upper bound.
|
|
auto anyObjectTy = getASTContext().getAnyObjectType();
|
|
auto eraseToAnyObject =
|
|
[&, concreteFormalType, F](SGFContext C) -> ManagedValue {
|
|
auto concreteValue = F(SGFContext());
|
|
assert(concreteFormalType->isBridgeableObjectType());
|
|
return B.createInitExistentialRef(
|
|
loc, SILType::getPrimitiveObjectType(anyObjectTy), concreteFormalType,
|
|
concreteValue, conformances);
|
|
};
|
|
|
|
if (this->F.getLoweredFunctionType()->isPseudogeneric()) {
|
|
if (anyObjectTy && concreteFormalType->is<ArchetypeType>()) {
|
|
concreteFormalType = anyObjectTy;
|
|
|
|
// The original conformances are no good because they have the wrong
|
|
// (pseudogeneric) subject type.
|
|
conformances = collectExistentialConformances(
|
|
concreteFormalType, anyObjectTy);
|
|
F = eraseToAnyObject;
|
|
}
|
|
}
|
|
|
|
if (!silConv.useLoweredAddresses()) {
|
|
// We should never create new buffers just for init_existential under
|
|
// opaque values mode: This is a case of an opaque value that we can
|
|
// "treat" as a by-value one
|
|
ManagedValue sub = F(SGFContext());
|
|
return B.createInitExistentialValue(
|
|
loc, existentialTL.getLoweredType(), concreteFormalType,
|
|
sub, conformances);
|
|
}
|
|
|
|
// Allocate the existential.
|
|
return B.bufferForExpr(
|
|
loc, existentialTL.getLoweredType(), existentialTL, C,
|
|
[&](SILValue existential) {
|
|
// Initialize the existential in-place.
|
|
ExistentialInitialization init(*this, existential,
|
|
concreteFormalType,
|
|
conformances,
|
|
ExistentialRepresentation::Opaque);
|
|
ManagedValue mv = F(SGFContext(&init));
|
|
if (!mv.isInContext()) {
|
|
init.copyOrInitValueInto(*this, loc, mv.ensurePlusOne(*this, loc),
|
|
/*init*/ true);
|
|
init.finishInitialization(*this);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Unhandled ExistentialRepresentation in switch.");
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitClassMetatypeToObject(SILLocation loc,
|
|
ManagedValue v,
|
|
SILType resultTy) {
|
|
SILValue value = v.getUnmanagedValue();
|
|
|
|
// Convert the metatype to objc representation.
|
|
auto metatypeTy = value->getType().castTo<MetatypeType>();
|
|
auto objcMetatypeTy = CanMetatypeType::get(metatypeTy.getInstanceType(),
|
|
MetatypeRepresentation::ObjC);
|
|
value = B.createThickToObjCMetatype(loc, value,
|
|
SILType::getPrimitiveObjectType(objcMetatypeTy));
|
|
|
|
// Convert to an object reference.
|
|
value = B.createObjCMetatypeToObject(loc, value, resultTy);
|
|
return emitManagedRValueWithCleanup(value);
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitExistentialMetatypeToObject(SILLocation loc,
|
|
ManagedValue v,
|
|
SILType resultTy) {
|
|
SILValue value = v.getUnmanagedValue();
|
|
|
|
// Convert the metatype to objc representation.
|
|
auto metatypeTy = value->getType().castTo<ExistentialMetatypeType>();
|
|
auto objcMetatypeTy = CanExistentialMetatypeType::get(
|
|
metatypeTy.getInstanceType(),
|
|
MetatypeRepresentation::ObjC);
|
|
value = B.createThickToObjCMetatype(loc, value,
|
|
SILType::getPrimitiveObjectType(objcMetatypeTy));
|
|
|
|
// Convert to an object reference.
|
|
value = B.createObjCExistentialMetatypeToObject(loc, value, resultTy);
|
|
|
|
return emitManagedRValueWithCleanup(value);
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitProtocolMetatypeToObject(SILLocation loc,
|
|
CanType inputTy,
|
|
SILType resultTy) {
|
|
auto protocolType = inputTy->castTo<MetatypeType>()->getInstanceType();
|
|
if (auto existential = protocolType->getAs<ExistentialType>())
|
|
protocolType = existential->getConstraintType();
|
|
|
|
ProtocolDecl *protocol = protocolType->castTo<ProtocolType>()->getDecl();
|
|
|
|
SILValue value = B.createObjCProtocol(loc, protocol, resultTy);
|
|
|
|
// Protocol objects, despite being global objects, inherit default reference
|
|
// counting semantics from NSObject, so we need to retain the protocol
|
|
// reference when we use it to prevent it being released and attempting to
|
|
// deallocate itself. It doesn't matter if we ever actually clean up that
|
|
// retain though.
|
|
value = B.createCopyValue(loc, value);
|
|
return emitManagedRValueWithCleanup(value);
|
|
}
|
|
|
|
ManagedValue
|
|
SILGenFunction::emitOpenExistential(
|
|
SILLocation loc,
|
|
ManagedValue existentialValue,
|
|
SILType loweredOpenedType,
|
|
AccessKind accessKind) {
|
|
assert(isInFormalEvaluationScope());
|
|
|
|
SILType existentialType = existentialValue.getType();
|
|
switch (existentialType.getPreferredExistentialRepresentation()) {
|
|
case ExistentialRepresentation::Opaque: {
|
|
// With CoW existentials we can't consume the boxed value inside of
|
|
// the existential. (We could only do so after a uniqueness check on
|
|
// the box holding the value).
|
|
if (existentialType.isAddress()) {
|
|
OpenedExistentialAccess allowedAccess =
|
|
getOpenedExistentialAccessFor(accessKind);
|
|
if (!loweredOpenedType.isAddress()) {
|
|
assert(!silConv.useLoweredAddresses() &&
|
|
"Non-address loweredOpenedType is only allowed under opaque "
|
|
"value mode");
|
|
loweredOpenedType = loweredOpenedType.getAddressType();
|
|
}
|
|
SILValue archetypeValue =
|
|
B.createOpenExistentialAddr(loc, existentialValue.getValue(),
|
|
loweredOpenedType, allowedAccess);
|
|
return ManagedValue::forBorrowedAddressRValue(archetypeValue);
|
|
} else {
|
|
// borrow the existential and return an unmanaged opened value.
|
|
return B.createOpenExistentialValue(
|
|
loc, existentialValue, loweredOpenedType);
|
|
}
|
|
}
|
|
case ExistentialRepresentation::Metatype:
|
|
assert(existentialType.isObject());
|
|
return B.createOpenExistentialMetatype(
|
|
loc, existentialValue, loweredOpenedType);
|
|
case ExistentialRepresentation::Class:
|
|
assert(existentialType.isObject());
|
|
return B.createOpenExistentialRef(loc, existentialValue, loweredOpenedType);
|
|
case ExistentialRepresentation::Boxed:
|
|
if (existentialType.isAddress()) {
|
|
existentialValue = emitLoad(loc, existentialValue.getValue(),
|
|
getTypeLowering(existentialType),
|
|
SGFContext::AllowGuaranteedPlusZero,
|
|
IsNotTake);
|
|
}
|
|
|
|
existentialType = existentialValue.getType();
|
|
assert(existentialType.isObject());
|
|
if (loweredOpenedType.isAddress()) {
|
|
return B.createOpenExistentialBox(loc, existentialValue,
|
|
loweredOpenedType);
|
|
} else {
|
|
assert(!silConv.useLoweredAddresses());
|
|
return B.createOpenExistentialBoxValue(
|
|
loc, existentialValue, loweredOpenedType);
|
|
}
|
|
case ExistentialRepresentation::None:
|
|
llvm_unreachable("not existential");
|
|
}
|
|
llvm_unreachable("covered switch");
|
|
}
|
|
|
|
ManagedValue SILGenFunction::manageOpaqueValue(ManagedValue value,
|
|
SILLocation loc,
|
|
SGFContext C) {
|
|
// If the opaque value is consumable, we can just return the
|
|
// value with a cleanup. There is no need to retain it separately.
|
|
if (value.isPlusOneOrTrivial(*this))
|
|
return value;
|
|
|
|
// If the context wants a +0 value, guaranteed or immediate, we can
|
|
// give it to them, because OpenExistential emission guarantees the
|
|
// value.
|
|
if (C.isGuaranteedPlusZeroOk())
|
|
return value;
|
|
|
|
// If the context has an initialization a buffer, copy there instead
|
|
// of making a temporary allocation.
|
|
if (auto I = C.getEmitInto()) {
|
|
I->copyOrInitValueInto(*this, loc, value, /*init*/ false);
|
|
I->finishInitialization(*this);
|
|
return ManagedValue::forInContext();
|
|
}
|
|
|
|
// Otherwise, copy the value into a temporary.
|
|
return value.copyUnmanaged(*this, loc);
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitAsOrig(SILLocation loc,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
SILType expectedTy,
|
|
SGFContext C,
|
|
ValueProducerRef produceValue) {
|
|
// If the lowered substituted type already matches the substitution,
|
|
// we can just emit directly.
|
|
auto loweredSubstTy = getLoweredType(substType);
|
|
if (loweredSubstTy.getASTType() == expectedTy.getASTType()) {
|
|
auto result = produceValue(*this, loc, C);
|
|
|
|
// For convenience, force the result into the destination.
|
|
if (auto init = C.getEmitInto(); init && !result.isInContext()) {
|
|
result.forwardInto(*this, loc, init);
|
|
return ManagedValue::forInContext();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
auto conversion =
|
|
Conversion::getSubstToOrig(origType, substType, loweredSubstTy, expectedTy);
|
|
auto result = emitConvertedRValue(loc, conversion, C, produceValue);
|
|
|
|
// emitConvertedRValue always forces results into the context.
|
|
assert((C.getEmitInto() != nullptr) == result.isInContext());
|
|
return result;
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitConvertedRValue(Expr *E,
|
|
const Conversion &conversion,
|
|
SGFContext C) {
|
|
return emitConvertedRValue(E, conversion, C,
|
|
[&](SILGenFunction &SGF, SILLocation loc, SGFContext C) {
|
|
return emitRValueAsSingleValue(E, C);
|
|
});
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitConvertedRValue(SILLocation loc,
|
|
const Conversion &conversion,
|
|
SGFContext C,
|
|
ValueProducerRef produceValue){
|
|
// If we're emitting into a converting context, check whether we can
|
|
// peephole the conversions together.
|
|
if (auto outerConversion = C.getAsConversion()) {
|
|
if (outerConversion->tryPeephole(*this, loc, conversion, produceValue)) {
|
|
outerConversion->finishInitialization(*this);
|
|
return ManagedValue::forInContext();
|
|
}
|
|
}
|
|
|
|
// Otherwise, set up a reabstracting context and try to emit into that.
|
|
ConvertingInitialization init(conversion, C);
|
|
auto result = produceValue(*this, loc, SGFContext(&init));
|
|
auto finishedResult = init.finishEmission(*this, loc, result);
|
|
return finishedResult;
|
|
}
|
|
|
|
ManagedValue
|
|
ConvertingInitialization::finishEmission(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
ManagedValue formalResult) {
|
|
switch (getState()) {
|
|
case Uninitialized:
|
|
assert(!formalResult.isInContext());
|
|
State = Extracted;
|
|
return TheConversion.emit(SGF, loc, formalResult, FinalContext);
|
|
|
|
case Initialized:
|
|
llvm_unreachable("initialization never finished");
|
|
|
|
case PackExpanding:
|
|
case FinishedPackExpanding:
|
|
llvm_unreachable("cannot mix this with pack emission");
|
|
|
|
case Finished:
|
|
assert(formalResult.isInContext());
|
|
assert(!Value.isInContext() || FinalContext.getEmitInto());
|
|
State = Extracted;
|
|
return Value;
|
|
|
|
case Extracted:
|
|
llvm_unreachable("value already extracted");
|
|
}
|
|
llvm_unreachable("bad state");
|
|
}
|
|
|
|
void ConvertingInitialization::
|
|
performPackExpansionInitialization(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
SILValue indexWithinComponent,
|
|
llvm::function_ref<void(Initialization *into)> fn) {
|
|
// Bookkeeping.
|
|
assert(getState() == Uninitialized);
|
|
State = PackExpanding;
|
|
|
|
auto finalInit = FinalContext.getEmitInto();
|
|
assert(finalInit); // checked by canPerformPackExpansionInitialization
|
|
finalInit->performPackExpansionInitialization(
|
|
SGF, loc, indexWithinComponent,
|
|
[&](Initialization *subEltInit) {
|
|
// FIXME: translate the subst types into the element context.
|
|
ConvertingInitialization eltInit(getConversion(), SGFContext(subEltInit));
|
|
fn(&eltInit);
|
|
});
|
|
}
|
|
|
|
static std::optional<CombinedConversions>
|
|
combineConversions(SILGenFunction &SGF, const Conversion &outer,
|
|
const Conversion &inner);
|
|
|
|
bool ConvertingInitialization::tryPeephole(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
ManagedValue origValue,
|
|
Conversion innerConversion) {
|
|
return tryPeephole(SGF, loc, innerConversion,
|
|
[&](SILGenFunction &SGF, SILLocation loc, SGFContext C) {
|
|
return origValue;
|
|
});
|
|
}
|
|
|
|
bool ConvertingInitialization::tryPeephole(SILGenFunction &SGF,
|
|
Expr *E,
|
|
Conversion innerConversion) {
|
|
return tryPeephole(SGF, E, innerConversion,
|
|
[&](SILGenFunction &SGF, SILLocation loc, SGFContext C) {
|
|
return SGF.emitRValueAsSingleValue(E, C);
|
|
});
|
|
}
|
|
|
|
bool ConvertingInitialization::tryPeephole(SILGenFunction &SGF, SILLocation loc,
|
|
Conversion innerConversion,
|
|
ValueProducerRef produceOrigValue) {
|
|
const auto &outerConversion = getConversion();
|
|
auto combined = combineConversions(SGF, outerConversion, innerConversion);
|
|
if (!combined)
|
|
return false;
|
|
|
|
assert(!combined->second || combined->first);
|
|
|
|
ManagedValue result;
|
|
if (!combined->first) {
|
|
result = produceOrigValue(SGF, loc, FinalContext);
|
|
} else if (!combined->second) {
|
|
result = SGF.emitConvertedRValue(loc, *combined->first, FinalContext,
|
|
produceOrigValue);
|
|
} else {
|
|
// Compute the first result without any context. We know that we won't
|
|
// be able to combine these conversions, so computing them together
|
|
// is just a waste of time, and it runs the risk of an infinite recursion
|
|
// if we screwed something up.
|
|
auto firstResult =
|
|
SGF.emitConvertedRValue(loc, *combined->first, SGFContext(),
|
|
produceOrigValue);
|
|
result = combined->second->emit(SGF, loc, firstResult, FinalContext);
|
|
}
|
|
|
|
initWithConvertedValue(SGF, loc, result);
|
|
return true;
|
|
}
|
|
|
|
void ConvertingInitialization::copyOrInitValueInto(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
ManagedValue formalValue,
|
|
bool isInit) {
|
|
assert(getState() == Uninitialized && "already have saved value?");
|
|
|
|
// TODO: take advantage of borrowed inputs?
|
|
if (!isInit) formalValue = formalValue.copy(SGF, loc);
|
|
|
|
// Convert the value.
|
|
auto value = TheConversion.emit(SGF, loc, formalValue, FinalContext);
|
|
|
|
initWithConvertedValue(SGF, loc, value);
|
|
}
|
|
|
|
void ConvertingInitialization::initWithConvertedValue(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
ManagedValue value) {
|
|
assert(getState() == Uninitialized);
|
|
auto finalInit = FinalContext.getEmitInto();
|
|
if (value.isInContext()) {
|
|
assert(finalInit);
|
|
} else if (finalInit) {
|
|
value.ensurePlusOne(SGF, loc).forwardInto(SGF, loc, finalInit);
|
|
value = ManagedValue::forInContext();
|
|
}
|
|
|
|
assert(value.isInContext() == (finalInit != nullptr));
|
|
Value = value;
|
|
State = Initialized;
|
|
}
|
|
|
|
ManagedValue
|
|
ConvertingInitialization::emitWithAdjustedConversion(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
Conversion adjustedConversion,
|
|
ValueProducerRef produceValue) {
|
|
ConvertingInitialization init(adjustedConversion, getFinalContext());
|
|
auto result = produceValue(SGF, loc, SGFContext(&init));
|
|
result = init.finishEmission(SGF, loc, result);
|
|
initWithConvertedValue(SGF, loc, result);
|
|
finishInitialization(SGF);
|
|
return ManagedValue::forInContext();
|
|
}
|
|
|
|
ManagedValue Conversion::emit(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue value, SGFContext C) const {
|
|
switch (getKind()) {
|
|
case AnyErasure:
|
|
case BridgingSubtype:
|
|
case Subtype:
|
|
return SGF.emitTransformedValue(loc, value, getSourceType(),
|
|
getResultType(), C);
|
|
|
|
case ForceOptional: {
|
|
auto &optTL = SGF.getTypeLowering(value.getType());
|
|
return SGF.emitCheckedGetOptionalValueFrom(loc, value,
|
|
/*isForceUnwrap*/ true,
|
|
optTL, C);
|
|
}
|
|
|
|
case BridgeToObjC:
|
|
return SGF.emitNativeToBridgedValue(loc, value,
|
|
getSourceType(),
|
|
getResultType(),
|
|
getLoweredResultType(), C);
|
|
|
|
case ForceAndBridgeToObjC: {
|
|
auto &tl = SGF.getTypeLowering(value.getType());
|
|
auto sourceValueType = getSourceType().getOptionalObjectType();
|
|
value = SGF.emitCheckedGetOptionalValueFrom(loc, value,
|
|
/*isImplicitUnwrap*/ true,
|
|
tl, SGFContext());
|
|
return SGF.emitNativeToBridgedValue(loc, value, sourceValueType,
|
|
getResultType(),
|
|
getLoweredResultType(), C);
|
|
}
|
|
|
|
case BridgeFromObjC:
|
|
return SGF.emitBridgedToNativeValue(loc, value,
|
|
getSourceType(), getResultType(),
|
|
getLoweredResultType(), C);
|
|
|
|
case BridgeResultFromObjC:
|
|
return SGF.emitBridgedToNativeValue(loc, value,
|
|
getSourceType(), getResultType(),
|
|
getLoweredResultType(), C,
|
|
/*isResult*/ true);
|
|
|
|
case Reabstract:
|
|
assert(value.getType().getObjectType() ==
|
|
getReabstractionInputLoweredType().getObjectType());
|
|
return SGF.emitTransformedValue(loc, value,
|
|
getReabstractionInputOrigType(),
|
|
getReabstractionInputSubstType(),
|
|
getReabstractionOutputOrigType(),
|
|
getReabstractionOutputSubstType(),
|
|
getReabstractionOutputLoweredType(), C);
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
}
|
|
|
|
OptionalInjectionConversion
|
|
Conversion::adjustForInitialOptionalInjection() const {
|
|
switch (getKind()) {
|
|
case Reabstract:
|
|
return OptionalInjectionConversion::forValue(
|
|
getReabstract(
|
|
getReabstractionInputOrigType().getOptionalObjectType(),
|
|
getReabstractionInputSubstType().getOptionalObjectType(),
|
|
getReabstractionInputLoweredType().getOptionalObjectType(),
|
|
getReabstractionOutputOrigType().getOptionalObjectType(),
|
|
getReabstractionOutputSubstType().getOptionalObjectType(),
|
|
getReabstractionOutputLoweredType().getOptionalObjectType())
|
|
);
|
|
|
|
case Subtype:
|
|
return OptionalInjectionConversion::forValue(
|
|
getSubtype(
|
|
getSourceType().getOptionalObjectType(),
|
|
getResultType().getOptionalObjectType(),
|
|
getLoweredResultType().getOptionalObjectType())
|
|
);
|
|
|
|
// TODO: can these actually happen?
|
|
case ForceOptional:
|
|
case ForceAndBridgeToObjC:
|
|
case BridgingSubtype:
|
|
return OptionalInjectionConversion();
|
|
|
|
case AnyErasure:
|
|
case BridgeToObjC:
|
|
case BridgeFromObjC:
|
|
case BridgeResultFromObjC:
|
|
return OptionalInjectionConversion::forInjection(
|
|
getBridging(getKind(), getSourceType().getOptionalObjectType(),
|
|
getResultType(), getLoweredResultType(),
|
|
getBridgingOriginalInputType(), isBridgingExplicit()));
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
}
|
|
|
|
std::optional<Conversion>
|
|
Conversion::adjustForInitialOptionalConversions(CanType newSourceType) const {
|
|
switch (getKind()) {
|
|
case Reabstract:
|
|
// TODO: handle reabstraction conversions here, too.
|
|
return std::nullopt;
|
|
|
|
case ForceOptional:
|
|
case ForceAndBridgeToObjC:
|
|
return std::nullopt;
|
|
|
|
case BridgingSubtype:
|
|
case Subtype:
|
|
case AnyErasure:
|
|
case BridgeToObjC:
|
|
case BridgeFromObjC:
|
|
case BridgeResultFromObjC:
|
|
return Conversion::getBridging(
|
|
getKind(), newSourceType, getResultType(), getLoweredResultType(),
|
|
getBridgingOriginalInputType(), isBridgingExplicit());
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
}
|
|
|
|
std::optional<Conversion> Conversion::adjustForInitialForceValue() const {
|
|
switch (getKind()) {
|
|
case Reabstract:
|
|
case AnyErasure:
|
|
case BridgeFromObjC:
|
|
case BridgeResultFromObjC:
|
|
case ForceOptional:
|
|
case ForceAndBridgeToObjC:
|
|
case BridgingSubtype:
|
|
case Subtype:
|
|
return std::nullopt;
|
|
|
|
case BridgeToObjC: {
|
|
auto sourceOptType = getSourceType().wrapInOptionalType();
|
|
return Conversion::getBridging(ForceAndBridgeToObjC, sourceOptType,
|
|
getResultType(), getLoweredResultType(),
|
|
getBridgingOriginalInputType(),
|
|
isBridgingExplicit());
|
|
}
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
}
|
|
|
|
void Conversion::dump() const {
|
|
print(llvm::errs());
|
|
llvm::errs() << '\n';
|
|
}
|
|
|
|
static void printReabstraction(const Conversion &conversion,
|
|
llvm::raw_ostream &out, StringRef name) {
|
|
out << name << "(inputOrig: ";
|
|
conversion.getReabstractionInputOrigType().print(out);
|
|
out << ", inputSubst: ";
|
|
conversion.getReabstractionInputSubstType().print(out);
|
|
out << ", inputLowered: ";
|
|
conversion.getReabstractionInputLoweredType().print(out);
|
|
out << ", outputOrig: ";
|
|
conversion.getReabstractionOutputOrigType().print(out);
|
|
out << ", outputSubst: ";
|
|
conversion.getReabstractionOutputSubstType().print(out);
|
|
out << ", outputLowered: ";
|
|
conversion.getReabstractionOutputLoweredType().print(out);
|
|
out << ')';
|
|
}
|
|
|
|
static void printBridging(const Conversion &conversion, llvm::raw_ostream &out,
|
|
StringRef name) {
|
|
out << name << "(from: ";
|
|
conversion.getSourceType().print(out);
|
|
out << ", to: ";
|
|
conversion.getResultType().print(out);
|
|
out << ", explicit: " << conversion.isBridgingExplicit() << ')';
|
|
}
|
|
|
|
void Conversion::print(llvm::raw_ostream &out) const {
|
|
switch (getKind()) {
|
|
case Reabstract:
|
|
return printReabstraction(*this, out, "Reabstract");
|
|
case AnyErasure:
|
|
return printBridging(*this, out, "AnyErasure");
|
|
case BridgingSubtype:
|
|
return printBridging(*this, out, "BridgingSubtype");
|
|
case Subtype:
|
|
return printBridging(*this, out, "Subtype");
|
|
case ForceOptional:
|
|
return printBridging(*this, out, "ForceOptional");
|
|
case BridgeToObjC:
|
|
return printBridging(*this, out, "BridgeToObjC");
|
|
case ForceAndBridgeToObjC:
|
|
return printBridging(*this, out, "ForceAndBridgeToObjC");
|
|
case BridgeFromObjC:
|
|
return printBridging(*this, out, "BridgeFromObjC");
|
|
case BridgeResultFromObjC:
|
|
return printBridging(*this, out, "BridgeResultFromObjC");
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
}
|
|
|
|
static bool areRelatedTypesForBridgingPeephole(CanType sourceType,
|
|
CanType resultType) {
|
|
if (sourceType == resultType)
|
|
return true;
|
|
|
|
if (auto resultObjType = resultType.getOptionalObjectType()) {
|
|
// Optional-to-optional.
|
|
if (auto sourceObjType = sourceType.getOptionalObjectType()) {
|
|
return areRelatedTypesForBridgingPeephole(sourceObjType, resultObjType);
|
|
}
|
|
|
|
// Optional injection.
|
|
return areRelatedTypesForBridgingPeephole(sourceType, resultObjType);
|
|
}
|
|
|
|
// If the result type is AnyObject, then we can always apply the bridge
|
|
// via Any.
|
|
if (resultType->isAnyObject()) {
|
|
// ... as long as the source type is not an Optional.
|
|
if (sourceType->isBridgeableObjectType())
|
|
return true;
|
|
}
|
|
|
|
// TODO: maybe other class existentials? Existential conversions?
|
|
// They probably aren't important here.
|
|
|
|
// All the other rules only apply to class types.
|
|
if (!sourceType->mayHaveSuperclass() ||
|
|
!resultType->mayHaveSuperclass())
|
|
return false;
|
|
|
|
// Walk up the class hierarchy looking for an exact match.
|
|
while (auto superclass = sourceType->getSuperclass()) {
|
|
sourceType = superclass->getCanonicalType();
|
|
if (sourceType == resultType)
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, we don't know how to do this conversion.
|
|
return false;
|
|
}
|
|
|
|
/// Does the given conversion turn a non-class type into Any, taking into
|
|
/// account optional-to-optional conversions?
|
|
static bool isValueToAnyConversion(CanType from, CanType to) {
|
|
while (auto toObj = to.getOptionalObjectType()) {
|
|
to = toObj;
|
|
if (auto fromObj = from.getOptionalObjectType()) {
|
|
from = fromObj;
|
|
}
|
|
}
|
|
|
|
assert(to->isAny());
|
|
|
|
// Types that we can easily transform into AnyObject:
|
|
// - classes and class-bounded archetypes
|
|
// - class existentials, even if not pure-@objc
|
|
// - @convention(objc) metatypes
|
|
// - @convention(block) functions
|
|
return !from->isAnyClassReferenceType() &&
|
|
!from->isBridgeableObjectType();
|
|
}
|
|
|
|
/// Check whether this conversion is Any??? to AnyObject???. If the result
|
|
/// type is less optional, it doesn't count.
|
|
static bool isMatchedAnyToAnyObjectConversion(CanType from, CanType to) {
|
|
while (auto fromObject = from.getOptionalObjectType()) {
|
|
auto toObject = to.getOptionalObjectType();
|
|
if (!toObject) return false;
|
|
from = fromObject;
|
|
to = toObject;
|
|
}
|
|
|
|
if (from->isAny()) {
|
|
assert(to->lookThroughAllOptionalTypes()->isAnyObject());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Conversion
|
|
Conversion::withSourceType(SILGenFunction &SGF, CanType substType) const {
|
|
return withSourceType(AbstractionPattern(substType), substType,
|
|
SGF.getLoweredType(substType));
|
|
}
|
|
|
|
Conversion
|
|
Conversion::withSourceType(AbstractionPattern origType,
|
|
CanType substType, SILType loweredType) const {
|
|
switch (getKind()) {
|
|
case Reabstract:
|
|
return getReabstract(origType, substType, loweredType,
|
|
getReabstractionOutputOrigType(),
|
|
getReabstractionOutputSubstType(),
|
|
getReabstractionOutputLoweredType());
|
|
case Subtype:
|
|
return getSubtype(substType, getResultType(), getLoweredResultType());
|
|
default:
|
|
llvm_unreachable("operation not supported on specialized bridging "
|
|
"conversions");
|
|
}
|
|
}
|
|
|
|
Conversion
|
|
Conversion::withResultType(AbstractionPattern origType,
|
|
CanType substType, SILType loweredType) const {
|
|
switch (getKind()) {
|
|
case Reabstract:
|
|
return getReabstract(getReabstractionInputOrigType(),
|
|
getReabstractionInputSubstType(),
|
|
getReabstractionInputLoweredType(),
|
|
origType, substType, loweredType);
|
|
case Subtype:
|
|
return getSubtype(getSourceType(), substType, loweredType);
|
|
default:
|
|
llvm_unreachable("operation not supported on specialized bridging "
|
|
"conversions");
|
|
}
|
|
}
|
|
|
|
/// Can a sequence of conversions from type1 -> type2 -> type3 be represented
|
|
/// as a conversion from type1 -> type3, or does that lose critical information?
|
|
static bool isCombinableConversionImpl(CanType type1,
|
|
CanType type2,
|
|
CanType type3) {
|
|
if (type1 == type2 || type2 == type3) return true;
|
|
|
|
// If the final result type is optional, then either we've got two
|
|
// optional->optional conversions or we injected into optional in at
|
|
// least one of the stages. Our analysis of how to do the conversion is
|
|
// going to be sensitive to the static optional depth, so make sure we
|
|
// don't lose that.
|
|
if (auto object3 = type3.getOptionalObjectType()) {
|
|
if (auto object2 = type2.getOptionalObjectType()) {
|
|
// If we have optional -> optional conversions at both stages,
|
|
// look through them all.
|
|
if (auto object1 = type1.getOptionalObjectType()) {
|
|
return isCombinableConversionImpl(object1, object2, object3);
|
|
|
|
// If we have an injection in the first stage, we'll still know we have
|
|
// an injection in the overall conversion.
|
|
} else {
|
|
return isCombinableConversionImpl(type1, object2, object3);
|
|
}
|
|
|
|
// We have an injection in the second stage. If we lose optionality
|
|
// in the first stage (i.e. we're converting an optional to an
|
|
// existential), then the combined conversion will be misinterpreted
|
|
// as an optional-to-optional conversion.
|
|
} else if (type1.getOptionalObjectType()) {
|
|
return false;
|
|
|
|
// Otherwise, we're preserving that we have an injection overall.
|
|
} else {
|
|
return isCombinableConversionImpl(type1, type2, object3);
|
|
}
|
|
}
|
|
|
|
// When we open an existential, we bind the erased type; this type should
|
|
// not change if we combine the conversions. The binding looks
|
|
// polymorphically through certain types but not through others.
|
|
if (type3.isExistentialType()) {
|
|
// We need to consider type2 to see if it has structure that
|
|
// would make it non-polymorphic, like if it's an optional.
|
|
|
|
// Existentials (including existential metatypes) are polymorphic.
|
|
if (type2.isAnyExistentialType())
|
|
return true;
|
|
|
|
// Class types are polymorphic.
|
|
if (type2.isAnyClassReferenceType())
|
|
return true;
|
|
|
|
// Metatypes are polymorphic.
|
|
if (isa<MetatypeType>(type2))
|
|
return true;
|
|
|
|
// Otherwise, no. Since we know that type1 != type2, we know that type2
|
|
// must have some kind of subtype-supporting structure; with the cases
|
|
// above ruled out, that must be either an optional or a function type.
|
|
// Note that, with an optional, we can probably still dynamically cast
|
|
// successfully, but that's not the standard we need to enforce here.
|
|
return false;
|
|
}
|
|
|
|
// If we have a function or tuple type, we need to see if we have a
|
|
// non-peepholeable conversion in the subconversions.
|
|
|
|
if (auto tuple3 = dyn_cast<TupleType>(type3)) {
|
|
auto tuple2 = cast<TupleType>(type2);
|
|
auto tuple1 = cast<TupleType>(type1);
|
|
assert(tuple1->getNumElements() == tuple3->getNumElements());
|
|
assert(tuple2->getNumElements() == tuple3->getNumElements());
|
|
for (auto i : range(tuple3->getNumElements())) {
|
|
if (!isCombinableConversionImpl(tuple1.getElementType(i),
|
|
tuple2.getElementType(i),
|
|
tuple3.getElementType(i)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (auto fn3 = dyn_cast<AnyFunctionType>(type3)) {
|
|
auto fn2 = cast<AnyFunctionType>(type2);
|
|
auto fn1 = cast<AnyFunctionType>(type1);
|
|
assert(fn1->getNumParams() == fn3->getNumParams());
|
|
assert(fn2->getNumParams() == fn3->getNumParams());
|
|
if (!isCombinableConversionImpl(fn1.getResult(),
|
|
fn2.getResult(),
|
|
fn3.getResult()))
|
|
return false;
|
|
for (auto i : range(fn3->getNumParams())) {
|
|
// Note the reversal for invariance.
|
|
if (!isCombinableConversionImpl(fn3.getParams()[i].getParameterType(),
|
|
fn2.getParams()[i].getParameterType(),
|
|
fn1.getParams()[i].getParameterType()))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (auto exp3 = dyn_cast<PackExpansionType>(type3)) {
|
|
auto exp2 = cast<PackExpansionType>(type2);
|
|
auto exp1 = cast<PackExpansionType>(type1);
|
|
return isCombinableConversionImpl(exp1.getPatternType(),
|
|
exp2.getPatternType(),
|
|
exp3.getPatternType());
|
|
}
|
|
|
|
// The only remaining types that support subtyping are classes and
|
|
// metatypes, and we can definitely just convert those.
|
|
return true;
|
|
}
|
|
|
|
/// Can we combine the given conversions so that we go straight from
|
|
/// innerSrcType to outerDestType, or does that lose information?
|
|
static bool isCombinableConversion(const Conversion &inner,
|
|
const Conversion &outer) {
|
|
assert(inner.getResultType() == outer.getSourceType() &&
|
|
"unexpected intermediate conversion");
|
|
|
|
return isCombinableConversionImpl(inner.getSourceType(),
|
|
inner.getResultType(),
|
|
outer.getResultType());
|
|
}
|
|
|
|
/// Given that we cannot combine the given conversions, at least
|
|
/// "salvage" them to propagate semantically-critical contextual
|
|
/// type information inward.
|
|
static std::optional<CombinedConversions>
|
|
salvageUncombinableConversion(SILGenFunction &SGF,
|
|
const Conversion &inner,
|
|
const Conversion &outer) {
|
|
// If the outer type is `@isolated(any)`, and the intermediate type
|
|
// is non-isolated, propagate the `@isolated(any)` conversion inwards.
|
|
// We don't want to do this if the intermediate function has some
|
|
// explicit isolation because we need to honor that conversion even
|
|
// if it's not the formal isolation of the source function (e.g. if
|
|
// the user coerces a nonisolated function to a @MainActor function
|
|
// type). But if the intermediate function type is non-isolated, the
|
|
// actual closure might still be isolated, either because we're
|
|
// type-checking in some mode that doesn't propagate isolation in types
|
|
// or because the isolation isn't representable in the type system
|
|
// (e.g. it's isolated to some capture).
|
|
if (auto outerOutputFnType =
|
|
dyn_cast<AnyFunctionType>(outer.getResultType())) {
|
|
auto intermediateFnType = cast<AnyFunctionType>(outer.getSourceType());
|
|
if (outerOutputFnType->getIsolation().isErased() &&
|
|
intermediateFnType->getIsolation().isNonIsolated()) {
|
|
// Construct new intermediate orig/subst/lowered types that are
|
|
// just the old intermediate type with `@isolated(any)`.
|
|
auto newIntermediateSubstType = intermediateFnType.withExtInfo(
|
|
intermediateFnType->getExtInfo().withIsolation(
|
|
FunctionTypeIsolation::forErased()));
|
|
auto newIntermediateOrigType =
|
|
AbstractionPattern(newIntermediateSubstType);
|
|
auto newIntermediateLoweredType =
|
|
SGF.getLoweredType(newIntermediateSubstType);
|
|
|
|
// Construct the new conversions with the new intermediate type.
|
|
return CombinedConversions(
|
|
inner.withResultType(newIntermediateOrigType,
|
|
newIntermediateSubstType,
|
|
newIntermediateLoweredType),
|
|
outer.withSourceType(SGF, newIntermediateSubstType));
|
|
}
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
static std::optional<CombinedConversions>
|
|
combineReabstract(SILGenFunction &SGF,
|
|
const Conversion &outer,
|
|
const Conversion &inner) {
|
|
// We can never combine conversions in a way that would lose information
|
|
// about the intermediate types.
|
|
if (!isCombinableConversion(inner, outer))
|
|
return salvageUncombinableConversion(SGF, inner, outer);
|
|
|
|
// Recognize when the whole conversion is an identity.
|
|
if (inner.getReabstractionInputLoweredType().getObjectType() ==
|
|
outer.getReabstractionOutputLoweredType().getObjectType())
|
|
return CombinedConversions();
|
|
|
|
// Produce a single conversion that goes straight from the inner input
|
|
// to the outer output.
|
|
return CombinedConversions(
|
|
Conversion::getReabstract(inner.getReabstractionInputOrigType(),
|
|
inner.getReabstractionInputSubstType(),
|
|
inner.getReabstractionInputLoweredType(),
|
|
outer.getReabstractionOutputOrigType(),
|
|
outer.getReabstractionOutputSubstType(),
|
|
outer.getReabstractionOutputLoweredType())
|
|
);
|
|
}
|
|
|
|
static std::optional<CombinedConversions>
|
|
combineSubtypeIntoReabstract(SILGenFunction &SGF,
|
|
const Conversion &outer,
|
|
const Conversion &inner) {
|
|
// We can never combine conversions in a way that would lose information
|
|
// about the intermediate types.
|
|
if (!isCombinableConversion(inner, outer))
|
|
return salvageUncombinableConversion(SGF, inner, outer);
|
|
|
|
auto inputSubstType = inner.getSourceType();
|
|
auto inputOrigType = AbstractionPattern(inputSubstType);
|
|
auto inputLoweredTy = SGF.getLoweredType(inputOrigType, inputSubstType);
|
|
|
|
return CombinedConversions(
|
|
Conversion::getReabstract(
|
|
inputOrigType, inputSubstType, inputLoweredTy,
|
|
outer.getReabstractionOutputOrigType(),
|
|
outer.getReabstractionOutputSubstType(),
|
|
outer.getReabstractionOutputLoweredType())
|
|
);
|
|
}
|
|
|
|
static std::optional<CombinedConversions>
|
|
combineSubtype(SILGenFunction &SGF,
|
|
const Conversion &outer, const Conversion &inner) {
|
|
if (!isCombinableConversion(inner, outer))
|
|
return salvageUncombinableConversion(SGF, inner, outer);
|
|
|
|
return CombinedConversions(
|
|
Conversion::getSubtype(inner.getSourceType(), outer.getResultType(),
|
|
outer.getLoweredResultType())
|
|
);
|
|
}
|
|
|
|
static std::optional<CombinedConversions>
|
|
combineBridging(SILGenFunction &SGF,
|
|
const Conversion &outer, const Conversion &inner) {
|
|
bool outerExplicit = outer.isBridgingExplicit();
|
|
bool innerExplicit = inner.isBridgingExplicit();
|
|
|
|
// Never peephole if both conversions are explicit; there might be
|
|
// something the user's trying to do which we don't understand.
|
|
if (outerExplicit && innerExplicit)
|
|
return std::nullopt;
|
|
|
|
// Otherwise, we can peephole if we understand the resulting conversion
|
|
// and applying the peephole doesn't change semantics.
|
|
|
|
CanType sourceType = inner.getSourceType();
|
|
CanType intermediateType = inner.getResultType();
|
|
assert(intermediateType == outer.getSourceType());
|
|
|
|
// If we're doing a peephole involving a force, we want to propagate
|
|
// the force to the source value. If it's not in fact optional, that
|
|
// won't work.
|
|
bool forced = outer.getKind() == Conversion::ForceAndBridgeToObjC;
|
|
if (forced) {
|
|
sourceType = sourceType.getOptionalObjectType();
|
|
if (!sourceType)
|
|
return std::nullopt;
|
|
|
|
intermediateType = intermediateType.getOptionalObjectType();
|
|
assert(intermediateType);
|
|
}
|
|
|
|
CanType resultType = outer.getResultType();
|
|
SILType loweredSourceTy = SGF.getLoweredType(sourceType);
|
|
SILType loweredResultTy = outer.getLoweredResultType();
|
|
|
|
auto applyPeephole = [&](const std::optional<Conversion> &conversion) {
|
|
if (!forced) {
|
|
if (!conversion)
|
|
return CombinedConversions();
|
|
return CombinedConversions(*conversion);
|
|
}
|
|
|
|
auto forceConversion =
|
|
Conversion::getBridging(Conversion::ForceOptional,
|
|
inner.getSourceType(), sourceType,
|
|
loweredSourceTy);
|
|
if (conversion)
|
|
return CombinedConversions(forceConversion, *conversion);
|
|
return CombinedConversions(forceConversion);
|
|
};
|
|
|
|
// Converting to Any doesn't do anything semantically special, so we
|
|
// can apply the peephole unconditionally.
|
|
if (isMatchedAnyToAnyObjectConversion(intermediateType, resultType)) {
|
|
if (loweredSourceTy == loweredResultTy) {
|
|
return applyPeephole(std::nullopt);
|
|
} else if (isValueToAnyConversion(sourceType, intermediateType)) {
|
|
return applyPeephole(
|
|
Conversion::getBridging(Conversion::BridgeToObjC,
|
|
sourceType, resultType, loweredResultTy));
|
|
} else {
|
|
return applyPeephole(
|
|
Conversion::getBridging(Conversion::BridgingSubtype,
|
|
sourceType, resultType, loweredResultTy));
|
|
}
|
|
}
|
|
|
|
// Otherwise, undoing a bridging conversions can change semantics by
|
|
// e.g. removing a copy, so we shouldn't do it unless the special
|
|
// syntactic bridging peephole applies. That requires one of the
|
|
// conversions to be explicit.
|
|
// TODO: use special SILGen to preserve semantics in this case,
|
|
// e.g. by making a copy.
|
|
if (!outerExplicit && !innerExplicit) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Okay, now we're in the domain of the bridging peephole: an
|
|
// explicit bridging conversion can cancel out an implicit bridge
|
|
// between related types.
|
|
|
|
// If the source and destination types have exactly the same
|
|
// representation, then (1) they're related and (2) we can directly
|
|
// emit into the context.
|
|
if (loweredSourceTy.getObjectType() == loweredResultTy.getObjectType()) {
|
|
return applyPeephole(std::nullopt);
|
|
}
|
|
|
|
// Look for a subtype relationship between the source and destination.
|
|
if (areRelatedTypesForBridgingPeephole(sourceType, resultType)) {
|
|
return applyPeephole(
|
|
Conversion::getBridging(Conversion::BridgingSubtype,
|
|
sourceType, resultType, loweredResultTy));
|
|
}
|
|
|
|
// If the inner conversion is a result conversion that removes
|
|
// optionality, and the non-optional source type is a subtype of the
|
|
// value type, this is just an implicit force.
|
|
if (!forced &&
|
|
inner.getKind() == Conversion::BridgeResultFromObjC) {
|
|
if (auto sourceValueType = sourceType.getOptionalObjectType()) {
|
|
if (!intermediateType.getOptionalObjectType() &&
|
|
areRelatedTypesForBridgingPeephole(sourceValueType, resultType)) {
|
|
forced = true;
|
|
sourceType = sourceValueType;
|
|
loweredSourceTy = loweredSourceTy.getOptionalObjectType();
|
|
return applyPeephole(
|
|
Conversion::getBridging(Conversion::BridgingSubtype,
|
|
sourceValueType, resultType, loweredResultTy));
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// TODO: this would really be a lot cleaner if it just returned a
|
|
/// std::optional<Conversion>.
|
|
static std::optional<CombinedConversions>
|
|
combineConversions(SILGenFunction &SGF, const Conversion &outer,
|
|
const Conversion &inner) {
|
|
switch (outer.getKind()) {
|
|
case Conversion::Reabstract:
|
|
switch (inner.getKind()) {
|
|
case Conversion::Reabstract:
|
|
return combineReabstract(SGF, outer, inner);
|
|
|
|
case Conversion::Subtype:
|
|
return combineSubtypeIntoReabstract(SGF, outer, inner);
|
|
|
|
default:
|
|
return std::nullopt;
|
|
}
|
|
|
|
case Conversion::Subtype:
|
|
if (inner.getKind() == Conversion::Subtype)
|
|
return combineSubtype(SGF, outer, inner);
|
|
return std::nullopt;
|
|
|
|
case Conversion::AnyErasure:
|
|
case Conversion::BridgingSubtype:
|
|
case Conversion::BridgeFromObjC:
|
|
case Conversion::BridgeResultFromObjC:
|
|
// TODO: maybe peephole bridging through a Swift type?
|
|
// This isn't actually something that happens in normal code generation.
|
|
return std::nullopt;
|
|
|
|
case Conversion::ForceOptional:
|
|
return std::nullopt;
|
|
|
|
case Conversion::ForceAndBridgeToObjC:
|
|
case Conversion::BridgeToObjC:
|
|
switch (inner.getKind()) {
|
|
case Conversion::AnyErasure:
|
|
case Conversion::BridgeFromObjC:
|
|
case Conversion::BridgeResultFromObjC:
|
|
return combineBridging(SGF, outer, inner);
|
|
|
|
default:
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
}
|
|
|
|
bool Lowering::canPeepholeConversions(SILGenFunction &SGF,
|
|
const Conversion &outer,
|
|
const Conversion &inner) {
|
|
return combineConversions(SGF, outer, inner).has_value();
|
|
}
|