Files
swift-mirror/lib/AST/RequirementMachine/PropertyRelations.cpp
2024-09-04 15:13:43 -07:00

161 lines
5.6 KiB
C++

//===--- PropertyRelations.cpp - Relations between property rules ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Utility functions used during property map construction to record rewrite
// loops that describe certain special identities between rewrite rules that
// are discovered by the property map.
//
// For example, a superclass requirement implies an AnyObject layout
// requirement in the Swift language; if both are specified in some set of
// user-written requirements, the latter requirement is redundant and should
// be dropped from the minimal generic signature.
//
// This is described by recording a rewrite loop connecting the superclass rule
// and the AnyObject layout rule via a special rewrite step known as a
// "relation".
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Type.h"
#include "swift/Basic/Assertions.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include "RewriteSystem.h"
using namespace swift;
using namespace rewriting;
RewriteSystem::Relation
RewriteSystem::getRelation(unsigned index) const {
return Relations[index];
}
/// Record a relation that transforms the left hand side when it appears
/// at the end of a term to the right hand side. Returns the relation ID,
/// which can be passed to RewriteStep::forRelation().
unsigned RewriteSystem::recordRelation(Term lhs, Term rhs) {
auto key = std::make_pair(lhs, rhs);
auto found = RelationMap.find(key);
if (found != RelationMap.end())
return found->second;
unsigned index = Relations.size();
Relations.push_back(key);
auto inserted = RelationMap.insert(std::make_pair(key, index));
DEBUG_ASSERT(inserted.second);
return index;
}
/// Given a left-hand side symbol [p1] and a right-hand side symbol
/// [p2], record a relation ([p1].[p2] => [p1]), which denotes that
/// the property p1 implies the property p2.
///
/// An example is a superclass requirement that implies a layout
/// requirement.
unsigned RewriteSystem::recordRelation(Symbol lhsProperty,
Symbol rhsProperty) {
DEBUG_ASSERT(lhsProperty.isProperty());
DEBUG_ASSERT(rhsProperty.isProperty());
MutableTerm lhsTerm;
lhsTerm.add(lhsProperty);
lhsTerm.add(rhsProperty);
MutableTerm rhsTerm;
rhsTerm.add(lhsProperty);
// Record a relation ([p1].[p2] => [p1]).
return recordRelation(
Term::get(lhsTerm, Context),
Term::get(rhsTerm, Context));
}
/// Record a relation ([concrete: C].[P] => [concrete: C].[concrete: C : P])
/// or ([superclass: C].[P] => [superclass: C].[concrete: C : P]) which combines
/// a concrete type symbol (or a superclass symbol) with a protocol
/// symbol to form a single a concrete conformance symbol.
unsigned RewriteSystem::recordConcreteConformanceRelation(
Symbol concreteSymbol, Symbol protocolSymbol,
Symbol concreteConformanceSymbol) {
ASSERT(protocolSymbol.getKind() == Symbol::Kind::Protocol);
ASSERT(protocolSymbol.getProtocol() ==
concreteConformanceSymbol.getProtocol());
ASSERT(concreteSymbol.getKind() == Symbol::Kind::Superclass ||
concreteSymbol.getKind() == Symbol::Kind::ConcreteType);
MutableTerm lhsTerm;
lhsTerm.add(concreteSymbol);
lhsTerm.add(protocolSymbol);
MutableTerm rhsTerm;
rhsTerm.add(concreteSymbol);
rhsTerm.add(concreteConformanceSymbol);
return recordRelation(
Term::get(lhsTerm, Context),
Term::get(rhsTerm, Context));
}
/// Record a relation ([concrete: C : P].[P:X].[concrete: C.X] =>
/// [concrete: C : P].[P:X]) which "concretizes" a nested type C.X of a
/// type parameter conforming to P known to equal the concrete type C.
unsigned RewriteSystem::recordConcreteTypeWitnessRelation(
Symbol concreteConformanceSymbol,
Symbol associatedTypeSymbol,
Symbol typeWitnessSymbol) {
ASSERT(concreteConformanceSymbol.getKind() ==
Symbol::Kind::ConcreteConformance);
ASSERT(associatedTypeSymbol.getKind() ==
Symbol::Kind::AssociatedType);
ASSERT(concreteConformanceSymbol.getProtocol() ==
associatedTypeSymbol.getProtocol());
ASSERT(typeWitnessSymbol.getKind() == Symbol::Kind::ConcreteType);
MutableTerm rhsTerm;
rhsTerm.add(concreteConformanceSymbol);
rhsTerm.add(associatedTypeSymbol);
MutableTerm lhsTerm(rhsTerm);
lhsTerm.add(typeWitnessSymbol);
return recordRelation(
Term::get(lhsTerm, Context),
Term::get(rhsTerm, Context));
}
/// Record a relation ([concrete: C : P].[P:X].[concrete: C] =>
/// [concrete: C : P].[P:X]) which "ties off" a nested type C.X that is
/// equivalent to C.
unsigned RewriteSystem::recordSameTypeWitnessRelation(
Symbol concreteConformanceSymbol,
Symbol associatedTypeSymbol) {
ASSERT(concreteConformanceSymbol.getKind() ==
Symbol::Kind::ConcreteConformance);
ASSERT(associatedTypeSymbol.getKind() ==
Symbol::Kind::AssociatedType);
MutableTerm rhsTerm;
rhsTerm.add(concreteConformanceSymbol);
auto concreteSymbol = Symbol::forConcreteType(
concreteConformanceSymbol.getConcreteType(),
concreteConformanceSymbol.getSubstitutions(),
Context);
MutableTerm lhsTerm(rhsTerm);
lhsTerm.add(associatedTypeSymbol);
lhsTerm.add(concreteSymbol);
return recordRelation(
Term::get(lhsTerm, Context),
Term::get(rhsTerm, Context));
}