mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Convert a bunch of places where we're dumping to stderr and calling `abort` over to using `ABORT` such that the message gets printed to the pretty stack trace. This ensures it gets picked up by CrashReporter.
575 lines
20 KiB
C++
575 lines
20 KiB
C++
//===--- RequirementMachine.cpp - Generics with term rewriting ------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2021 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A requirement machine is constructed from a collection of requirements over
|
|
// some set of generic parameters, and consists of a rewrite system together
|
|
// with a property map.
|
|
//
|
|
// The rewrite system and property map are used to answer questions about the
|
|
// type parameters expressed by this set of generic requirements. These are
|
|
// called "generic signature queries", and are defined as methods on the
|
|
// GenericSignature class; for example, two of the more common ones are
|
|
// getReducedType() and requiresProtocol().
|
|
//
|
|
// The terms of the rewrite system describe all possible type parameters that
|
|
// can be written -- the generic parameters themselves, together with all nested
|
|
// associated types generated by protocol conformances.
|
|
//
|
|
// The property map describes the requirements imposed on each type parameter,
|
|
// either directly by the user or implied by some protocol conformance.
|
|
//
|
|
// There are two "kinds" of requirement machines:
|
|
// - built from canonical, minimal generic signatures, used for queries,
|
|
// - built from user-written requirements, used to compute minimal generic
|
|
// signatures.
|
|
//
|
|
// Ultimately, all minimal generic signatures are built by the second kind of
|
|
// requirement machine; the first kind consumes a minimal generic signature
|
|
// that was previously constructed, for example from a deserialized module.
|
|
//
|
|
// The second kind of requirement machine records additional information
|
|
// during completion.
|
|
//
|
|
// The second kind can become the first; after a minimal generic signature has
|
|
// been computed, the rewrite loops and other information only needed for
|
|
// minimization can be discarded.
|
|
//
|
|
// # Requirement machine initialization
|
|
//
|
|
// Requirement machines of the first kind are constructed by:
|
|
// - initWithProtocolSignatureRequirements()
|
|
// - initWithGenericSignature()
|
|
//
|
|
// The RewriteContext::getRequirementMachine() methods wrap the above with
|
|
// a lazy cache.
|
|
//
|
|
// Requirement machines of the second kind are constructed by:
|
|
// - initWithProtocolWrittenRequirements()
|
|
// - initWithWrittenRequirements()
|
|
//
|
|
// These are used from the implementations of RequirementSignatureRequest,
|
|
// AbstractGenericSignatureRequest and InferredGenericSignatureRequest
|
|
// in RequirementMachineRequests.cpp.
|
|
//
|
|
// Both kinds of requirement machines undergo a multi-stage construction
|
|
// process which is best understood as a series of state transitions:
|
|
//
|
|
// /--------------------------\
|
|
// | Empty RequirementMachine |
|
|
// \--------------------------/
|
|
// | --------------
|
|
// | / Requirement /
|
|
// | --------------
|
|
// | |
|
|
// | v
|
|
// | +-------------+
|
|
// | | RuleBuilder |
|
|
// | +-------------+
|
|
// | |
|
|
// | v
|
|
// | -------
|
|
// | / Rule /
|
|
// | -------
|
|
// | |
|
|
// | +-----------------------+
|
|
// | |
|
|
// v v
|
|
// +----------------+
|
|
// | Initialization |
|
|
// +----------------+
|
|
// |
|
|
// v
|
|
// /-----------------------------\
|
|
// | Initial RequirementMachine |
|
|
// | /-----------------------\ |
|
|
// | | Initial RewriteSystem | |
|
|
// | \-----------------------/ |
|
|
// \------------------------------/
|
|
// |
|
|
// v
|
|
// +------------+
|
|
// | Completion |
|
|
// +------------+
|
|
// |
|
|
// v
|
|
// /------------------------------------------------------------------------\
|
|
// | Complete RequirementMachine |
|
|
// | +------ optional ----+ |
|
|
// | /-------------------------\ /-------------\ | /--------------\ | |
|
|
// | | Confluent RewriteSystem | | PropertyMap | | | RewriteLoops | | |
|
|
// | \-------------------------/ \-------------/ | \--------------/ | |
|
|
// | +--------------------+ |
|
|
// \------------------------------------------------------------------------/
|
|
//
|
|
//
|
|
// The RuleBuilder converts desugared requirements into rules. See
|
|
// RuleBuilder.cpp and RequirementLowering.cpp.
|
|
//
|
|
// Completion is an iterated process involving the Knuth-Bendix algorithm and
|
|
// property map construction, which are implemented in KnuthBendix.cpp and
|
|
// PropertyMap.cpp.
|
|
//
|
|
// # Requirement machine minimization
|
|
//
|
|
// A complete RequirementMachine of the second kind -- built from user-written
|
|
// requirements, with RewriteLoops recorded -- undergoes an additional state
|
|
// transition into a minimized state via a minimization process which identifies
|
|
// redundant rules. This is implemented in HomotopyReduction.cpp and
|
|
// MinimalConformances.cpp.
|
|
//
|
|
// After minimization, the remaining non-redundant rules are converted into
|
|
// the Requirements of a minimal generic signature by the RequirementBuilder.
|
|
// Then, the requirement machine undergoes a final state transition into the
|
|
// immutable "frozen" state:
|
|
//
|
|
// /-----------------------------\
|
|
// | Complete RequirementMachine |
|
|
// \-----------------------------/
|
|
// |
|
|
// v
|
|
// +--------------+ -------------------
|
|
// | Minimization | ------> / RequirementError /
|
|
// +--------------+ -------------------
|
|
// |
|
|
// v
|
|
// /------------------------------\
|
|
// | Minimized RequirementMachine | ---------------+
|
|
// \------------------------------/ |
|
|
// | v
|
|
// | -------
|
|
// | / Rule /
|
|
// v -------
|
|
// | |
|
|
// | v
|
|
// | +--------------------+
|
|
// | | RequirementBuilder |
|
|
// | +--------------------+
|
|
// | |
|
|
// | v
|
|
// | --------------
|
|
// | / Requirement /
|
|
// v --------------
|
|
// +----------+
|
|
// | Freezing |
|
|
// +----------+
|
|
// |
|
|
// v
|
|
// /---------------------------\
|
|
// | Frozen RequirementMachine |
|
|
// \---------------------------/
|
|
//
|
|
// # Generic signature queries
|
|
//
|
|
// Requirement machines of the first kind move into the "frozen" state
|
|
// immediately after completion.
|
|
//
|
|
// /-----------------------------\
|
|
// | Complete RequirementMachine |
|
|
// \-----------------------------/
|
|
// |
|
|
// v
|
|
// +----------+
|
|
// | Freezing |
|
|
// +----------+
|
|
// |
|
|
// v
|
|
// /---------------------------\
|
|
// | Frozen RequirementMachine |
|
|
// \---------------------------/
|
|
//
|
|
// Once frozen, generic signature queries can be issued against the new
|
|
// requirement machine of either kind. These are implemented as methods on
|
|
// RequirementMachine in GenericSignatureQueries.cpp.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RequirementMachine.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/GenericSignature.h"
|
|
#include "swift/AST/PrettyStackTrace.h"
|
|
#include "swift/AST/Requirement.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "RequirementLowering.h"
|
|
#include "RuleBuilder.h"
|
|
|
|
using namespace swift;
|
|
using namespace rewriting;
|
|
|
|
RequirementMachine::RequirementMachine(RewriteContext &ctx)
|
|
: Context(ctx), System(ctx), Map(System) {
|
|
auto &langOpts = ctx.getASTContext().LangOpts;
|
|
Dump = langOpts.DumpRequirementMachine;
|
|
MaxRuleCount = langOpts.RequirementMachineMaxRuleCount;
|
|
MaxRuleLength = langOpts.RequirementMachineMaxRuleLength;
|
|
MaxConcreteNesting = langOpts.RequirementMachineMaxConcreteNesting;
|
|
Stats = ctx.getASTContext().Stats;
|
|
|
|
if (Stats)
|
|
++Stats->getFrontendCounters().NumRequirementMachines;
|
|
}
|
|
|
|
RequirementMachine::~RequirementMachine() {}
|
|
|
|
/// Checks the result of a completion in a context where we can't diagnose
|
|
/// failure, either when building a rewrite system from an existing
|
|
/// minimal signature (which should have been checked when it was
|
|
/// minimized) or from AbstractGenericSignatureRequest (where failure
|
|
/// is fatal).
|
|
void RequirementMachine::checkCompletionResult(CompletionResult result) const {
|
|
switch (result) {
|
|
case CompletionResult::Success:
|
|
break;
|
|
|
|
case CompletionResult::MaxRuleCount:
|
|
ABORT([&](auto &out) {
|
|
out << "Rewrite system exceeded maximum rule count\n";
|
|
dump(out);
|
|
});
|
|
|
|
case CompletionResult::MaxRuleLength:
|
|
ABORT([&](auto &out) {
|
|
out << "Rewrite system exceeded rule length limit\n";
|
|
dump(out);
|
|
});
|
|
|
|
case CompletionResult::MaxConcreteNesting:
|
|
ABORT([&](auto &out) {
|
|
out << "Rewrite system exceeded concrete type nesting depth limit\n";
|
|
dump(out);
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Build a requirement machine for the previously-computed requirement
|
|
/// signatures connected component of protocols.
|
|
///
|
|
/// This must only be called exactly once, before any other operations are
|
|
/// performed on this requirement machine.
|
|
///
|
|
/// Used by RewriteContext::getRequirementMachine(const ProtocolDecl *).
|
|
///
|
|
/// Returns failure if completion fails within the configured number of steps.
|
|
std::pair<CompletionResult, unsigned>
|
|
RequirementMachine::initWithProtocolSignatureRequirements(
|
|
ArrayRef<const ProtocolDecl *> protos) {
|
|
FrontendStatsTracer tracer(Stats, "build-rewrite-system");
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "Adding protocols";
|
|
for (auto *proto : protos) {
|
|
llvm::dbgs() << " " << proto->getName();
|
|
}
|
|
llvm::dbgs() << " {\n";
|
|
}
|
|
|
|
RuleBuilder builder(Context, System.getReferencedProtocols());
|
|
builder.initWithProtocolSignatureRequirements(protos);
|
|
|
|
// Add the initial set of rewrite rules to the rewrite system.
|
|
System.initialize(/*recordLoops=*/false, protos,
|
|
std::move(builder.ImportedRules),
|
|
std::move(builder.PermanentRules),
|
|
std::move(builder.RequirementRules));
|
|
|
|
auto result = computeCompletion(RewriteSystem::DisallowInvalidRequirements);
|
|
|
|
freeze();
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "}\n";
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Build a requirement machine for the requirements of a generic signature.
|
|
///
|
|
/// In this mode, minimization is not going to be performed, so rewrite loops
|
|
/// are not recorded.
|
|
///
|
|
/// This must only be called exactly once, before any other operations are
|
|
/// performed on this requirement machine.
|
|
///
|
|
/// Used by ASTContext::getOrCreateRequirementMachine().
|
|
///
|
|
/// Returns failure if completion fails within the configured number of steps.
|
|
std::pair<CompletionResult, unsigned>
|
|
RequirementMachine::initWithGenericSignature(GenericSignature sig) {
|
|
Sig = sig;
|
|
Params.append(sig.getGenericParams().begin(),
|
|
sig.getGenericParams().end());
|
|
|
|
PrettyStackTraceGenericSignature debugStack("building rewrite system for", sig);
|
|
|
|
FrontendStatsTracer tracer(Stats, "build-rewrite-system");
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "Adding generic signature " << sig << " {\n";
|
|
}
|
|
|
|
// Collect the top-level requirements, and all transitively-referenced
|
|
// protocol requirement signatures.
|
|
RuleBuilder builder(Context, System.getReferencedProtocols());
|
|
builder.initWithGenericSignature(sig.getGenericParams(),
|
|
sig.getRequirements());
|
|
|
|
// Add the initial set of rewrite rules to the rewrite system.
|
|
System.initialize(/*recordLoops=*/false,
|
|
/*protos=*/ArrayRef<const ProtocolDecl *>(),
|
|
std::move(builder.ImportedRules),
|
|
std::move(builder.PermanentRules),
|
|
std::move(builder.RequirementRules));
|
|
|
|
auto result = computeCompletion(RewriteSystem::DisallowInvalidRequirements);
|
|
|
|
freeze();
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "}\n";
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Build a requirement machine for the user-written requirements of connected
|
|
/// component of protocols.
|
|
///
|
|
/// This is used when actually building the requirement signatures of these
|
|
/// protocols. In this mode, minimization will be performed, so rewrite loops
|
|
/// are recorded during completion.
|
|
///
|
|
/// This must only be called exactly once, before any other operations are
|
|
/// performed on this requirement machine.
|
|
///
|
|
/// Used by RequirementSignatureRequest.
|
|
///
|
|
/// Returns failure if completion fails within the configured number of steps.
|
|
std::pair<CompletionResult, unsigned>
|
|
RequirementMachine::initWithProtocolWrittenRequirements(
|
|
ArrayRef<const ProtocolDecl *> component,
|
|
const llvm::DenseMap<const ProtocolDecl *,
|
|
SmallVector<StructuralRequirement, 4>> protos) {
|
|
FrontendStatsTracer tracer(Stats, "build-rewrite-system");
|
|
|
|
// For RequirementMachine::verify() when called by generic signature queries;
|
|
// We have a single valid generic parameter at depth 0, index 0.
|
|
Params.push_back(component[0]->getSelfInterfaceType()->castTo<GenericTypeParamType>());
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "Adding protocols";
|
|
for (auto *proto : component) {
|
|
llvm::dbgs() << " " << proto->getName();
|
|
}
|
|
llvm::dbgs() << " {\n";
|
|
}
|
|
|
|
RuleBuilder builder(Context, System.getReferencedProtocols());
|
|
builder.initWithProtocolWrittenRequirements(component, protos);
|
|
|
|
// Add the initial set of rewrite rules to the rewrite system.
|
|
System.initialize(/*recordLoops=*/true, component,
|
|
std::move(builder.ImportedRules),
|
|
std::move(builder.PermanentRules),
|
|
std::move(builder.RequirementRules));
|
|
|
|
auto result = computeCompletion(RewriteSystem::AllowInvalidRequirements);
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "}\n";
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Build a requirement machine from a set of generic parameters and
|
|
/// structural requirements.
|
|
///
|
|
/// In this mode, minimization will be performed, so rewrite loops are recorded
|
|
/// during completion.
|
|
///
|
|
/// This must only be called exactly once, before any other operations are
|
|
/// performed on this requirement machine.
|
|
///
|
|
/// Used by AbstractGenericSignatureRequest and InferredGenericSignatureRequest.
|
|
///
|
|
/// Returns failure if completion fails within the configured number of steps.
|
|
std::pair<CompletionResult, unsigned>
|
|
RequirementMachine::initWithWrittenRequirements(
|
|
ArrayRef<GenericTypeParamType *> genericParams,
|
|
ArrayRef<StructuralRequirement> requirements) {
|
|
Params.append(genericParams.begin(), genericParams.end());
|
|
|
|
FrontendStatsTracer tracer(Stats, "build-rewrite-system");
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "Adding generic parameters:";
|
|
for (auto *paramTy : genericParams)
|
|
llvm::dbgs() << " " << Type(paramTy);
|
|
llvm::dbgs() << "\n";
|
|
}
|
|
|
|
// Collect the top-level requirements, and all transitively-referenced
|
|
// protocol requirement signatures.
|
|
RuleBuilder builder(Context, System.getReferencedProtocols());
|
|
builder.initWithWrittenRequirements(genericParams, requirements);
|
|
|
|
// Add the initial set of rewrite rules to the rewrite system.
|
|
System.initialize(/*recordLoops=*/true,
|
|
/*protos=*/ArrayRef<const ProtocolDecl *>(),
|
|
std::move(builder.ImportedRules),
|
|
std::move(builder.PermanentRules),
|
|
std::move(builder.RequirementRules));
|
|
|
|
auto result = computeCompletion(RewriteSystem::AllowInvalidRequirements);
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "}\n";
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Attempt to obtain a confluent rewrite system by iterating the Knuth-Bendix
|
|
/// completion procedure together with property map construction until fixed
|
|
/// point.
|
|
///
|
|
/// Returns a pair where the first element is the status. If the status is not
|
|
/// CompletionResult::Success, the second element of the pair is the rule ID
|
|
/// which triggered failure.
|
|
std::pair<CompletionResult, unsigned>
|
|
RequirementMachine::computeCompletion(RewriteSystem::ValidityPolicy policy) {
|
|
while (true) {
|
|
{
|
|
unsigned ruleCount = System.getRules().size();
|
|
|
|
// First, run the Knuth-Bendix algorithm to resolve overlapping rules.
|
|
auto result = System.performKnuthBendix(MaxRuleCount, MaxRuleLength);
|
|
|
|
unsigned rulesAdded = (System.getRules().size() - ruleCount);
|
|
|
|
if (Stats) {
|
|
Stats->getFrontendCounters()
|
|
.NumRequirementMachineCompletionSteps += rulesAdded;
|
|
}
|
|
|
|
// Check for failure.
|
|
if (result.first != CompletionResult::Success)
|
|
return result;
|
|
|
|
// Check invariants.
|
|
System.verifyRewriteRules(policy);
|
|
}
|
|
|
|
{
|
|
unsigned ruleCount = System.getRules().size();
|
|
|
|
// Build the property map, which also performs concrete term
|
|
// unification; if this added any new rules, run the completion
|
|
// procedure again.
|
|
Map.buildPropertyMap();
|
|
|
|
unsigned rulesAdded = (System.getRules().size() - ruleCount);
|
|
|
|
// If buildPropertyMap() didn't add any new rules, we are done.
|
|
if (rulesAdded == 0)
|
|
break;
|
|
|
|
if (Stats) {
|
|
Stats->getFrontendCounters()
|
|
.NumRequirementMachineUnifiedConcreteTerms += rulesAdded;
|
|
}
|
|
|
|
// Check new rules added by the property map against configured limits.
|
|
for (unsigned i = 0; i < rulesAdded; ++i) {
|
|
const auto &newRule = System.getRule(ruleCount + i);
|
|
if (newRule.getDepth() > MaxRuleLength + System.getLongestInitialRule()) {
|
|
return std::make_pair(CompletionResult::MaxRuleLength,
|
|
ruleCount + i);
|
|
}
|
|
if (newRule.getNesting() > MaxConcreteNesting + System.getDeepestInitialRule()) {
|
|
return std::make_pair(CompletionResult::MaxConcreteNesting,
|
|
ruleCount + i);
|
|
}
|
|
}
|
|
|
|
if (System.getLocalRules().size() > MaxRuleCount) {
|
|
return std::make_pair(CompletionResult::MaxRuleCount,
|
|
System.getRules().size() - 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Dump) {
|
|
dump(llvm::dbgs());
|
|
}
|
|
|
|
ASSERT(!Complete);
|
|
Complete = true;
|
|
|
|
return std::make_pair(CompletionResult::Success, 0);
|
|
}
|
|
|
|
/// Transitions into a "frozen" state, where the requirement machine is now
|
|
/// immutable, and generic signature queries may be performed.
|
|
void RequirementMachine::freeze() {
|
|
System.freeze();
|
|
}
|
|
|
|
ArrayRef<Rule> RequirementMachine::getLocalRules() const {
|
|
return System.getLocalRules();
|
|
}
|
|
|
|
bool RequirementMachine::isComplete() const {
|
|
return Complete;
|
|
}
|
|
|
|
GenericSignatureErrors RequirementMachine::getErrors() const {
|
|
// FIXME: Assert if we had errors but we didn't emit any diagnostics?
|
|
return System.getErrors();
|
|
}
|
|
|
|
void RequirementMachine::dump(llvm::raw_ostream &out) const {
|
|
out << "Requirement machine for ";
|
|
if (Sig)
|
|
out << Sig;
|
|
else if (!System.getProtocols().empty()) {
|
|
auto protos = System.getProtocols();
|
|
out << "protocols [";
|
|
for (auto *proto : protos) {
|
|
out << " " << proto->getName();
|
|
}
|
|
out << " ]";
|
|
} else {
|
|
out << "fresh signature <";
|
|
for (auto paramTy : Params) {
|
|
out << " " << Type(paramTy);
|
|
if (paramTy->isParameterPack())
|
|
out << " " << paramTy;
|
|
}
|
|
out << " >";
|
|
}
|
|
out << "\n";
|
|
|
|
System.dump(out);
|
|
Map.dump(out);
|
|
|
|
out << "Conformance paths: {\n";
|
|
for (auto pair : ConformancePaths) {
|
|
out << "- " << pair.first.first << " : ";
|
|
out << pair.first.second->getName() << " => ";
|
|
pair.second.print(out);
|
|
out << "\n";
|
|
}
|
|
out << "}\n";
|
|
}
|