Files
swift-mirror/lib/AST/RequirementMachine/Symbol.cpp
Hamish Knight edca7c85ad Adopt ABORT throughout the compiler
Convert a bunch of places where we're dumping to stderr and calling
`abort` over to using `ABORT` such that the message gets printed to
the pretty stack trace. This ensures it gets picked up by
CrashReporter.
2025-05-19 20:55:01 +01:00

837 lines
23 KiB
C++

//===--- Symbol.cpp - The generics rewrite system alphabet ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <vector>
#include "RewriteContext.h"
#include "Symbol.h"
#include "Term.h"
using namespace swift;
using namespace rewriting;
const StringRef Symbol::Kinds[] = {
"conformance",
"protocol",
"assocty",
"generic",
"name",
"shape",
"layout",
"super",
"concrete"
};
/// Symbols are uniqued and immutable, stored as a single pointer;
/// the Storage type is the allocated backing storage.
struct Symbol::Storage final
: public llvm::FoldingSetNode,
public llvm::TrailingObjects<Storage, unsigned, Term> {
friend class Symbol;
Symbol::Kind Kind;
const ProtocolDecl *Proto = nullptr;
union {
Identifier Name;
CanType ConcreteType;
LayoutConstraint Layout;
GenericTypeParamType *GenericParam;
};
explicit Storage(Identifier name) {
Kind = Symbol::Kind::Name;
Name = name;
}
explicit Storage(LayoutConstraint layout) {
Kind = Symbol::Kind::Layout;
Layout = layout;
}
explicit Storage(const ProtocolDecl *proto) {
Kind = Symbol::Kind::Protocol;
Proto = proto;
}
explicit Storage(GenericTypeParamType *param) {
Kind = Symbol::Kind::GenericParam;
GenericParam = param;
}
/// A dummy type for overload resolution of the
/// 'shape' constructor for Storage.
struct ForShape {};
explicit Storage(ForShape shape) {
Kind = Kind::Shape;
}
/// A dummy type for overload resolution of the
/// 'pack element' constructor for Storage.
struct ForPackElement {};
explicit Storage(ForPackElement shape) {
Kind = Kind::PackElement;
}
Storage(const ProtocolDecl *proto, Identifier name) {
Kind = Symbol::Kind::AssociatedType;
Proto = proto;
Name = name;
}
Storage(Symbol::Kind kind, CanType type, ArrayRef<Term> substitutions) {
DEBUG_ASSERT(kind == Symbol::Kind::Superclass ||
kind == Symbol::Kind::ConcreteType);
ASSERT(!type->hasUnboundGenericType());
ASSERT(!type->hasTypeVariable());
ASSERT(type->hasTypeParameter() != substitutions.empty());
Kind = kind;
ConcreteType = type;
*getTrailingObjects<unsigned>() = substitutions.size();
for (unsigned i : indices(substitutions))
getSubstitutions()[i] = substitutions[i];
}
Storage(CanType type, ArrayRef<Term> substitutions, const ProtocolDecl *proto) {
ASSERT(!type->hasTypeVariable());
ASSERT(type->hasTypeParameter() != substitutions.empty());
Kind = Symbol::Kind::ConcreteConformance;
Proto = proto;
*getTrailingObjects<unsigned>() = substitutions.size();
ConcreteType = type;
for (unsigned i : indices(substitutions))
getSubstitutions()[i] = substitutions[i];
}
size_t numTrailingObjects(OverloadToken<unsigned>) const {
return (Kind == Symbol::Kind::Superclass ||
Kind == Symbol::Kind::ConcreteType ||
Kind == Symbol::Kind::ConcreteConformance);
}
size_t numTrailingObjects(OverloadToken<Term>) const {
return getNumSubstitutions();
}
unsigned getNumSubstitutions() const {
DEBUG_ASSERT(numTrailingObjects(OverloadToken<unsigned>()) == 1);
return *getTrailingObjects<unsigned>();
}
MutableArrayRef<Term> getSubstitutions() {
return {getTrailingObjects<Term>(), getNumSubstitutions()};
}
ArrayRef<Term> getSubstitutions() const {
return {getTrailingObjects<Term>(), getNumSubstitutions()};
}
void Profile(llvm::FoldingSetNodeID &id) const;
};
Symbol::Kind Symbol::getKind() const {
return Ptr->Kind;
}
/// Get the identifier associated with an unbound name symbol or an
/// associated type symbol.
Identifier Symbol::getName() const {
DEBUG_ASSERT(getKind() == Kind::Name ||
getKind() == Kind::AssociatedType);
return Ptr->Name;
}
/// Get the protocol declaration associated with a protocol or associated type
/// symbol.
const ProtocolDecl *Symbol::getProtocol() const {
DEBUG_ASSERT(getKind() == Kind::Protocol ||
getKind() == Kind::AssociatedType ||
getKind() == Kind::ConcreteConformance);
return Ptr->Proto;
}
/// Get the generic parameter associated with a generic parameter symbol.
GenericTypeParamType *Symbol::getGenericParam() const {
DEBUG_ASSERT(getKind() == Kind::GenericParam);
return Ptr->GenericParam;
}
/// Get the layout constraint associated with a layout constraint symbol.
LayoutConstraint Symbol::getLayoutConstraint() const {
DEBUG_ASSERT(getKind() == Kind::Layout);
return Ptr->Layout;
}
/// Get the concrete type associated with a superclass, concrete type or
/// concrete conformance symbol.
CanType Symbol::getConcreteType() const {
DEBUG_ASSERT(getKind() == Kind::Superclass ||
getKind() == Kind::ConcreteType ||
getKind() == Kind::ConcreteConformance);
return Ptr->ConcreteType;
}
/// Get the list of substitution terms associated with a superclass,
/// concrete type or concrete conformance symbol.
ArrayRef<Term> Symbol::getSubstitutions() const {
return Ptr->getSubstitutions();
}
/// Creates a new name symbol.
Symbol Symbol::forName(Identifier name,
RewriteContext &ctx) {
llvm::FoldingSetNodeID id;
id.AddInteger(unsigned(Kind::Name));
id.AddPointer(name.get());
void *insertPos = nullptr;
if (auto *symbol = ctx.Symbols.FindNodeOrInsertPos(id, insertPos))
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(0, 0);
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(name);
if (CONDITIONAL_ASSERT_enabled()) {
llvm::FoldingSetNodeID newID;
symbol->Profile(newID);
ASSERT(id == newID);
}
ctx.Symbols.InsertNode(symbol, insertPos);
ctx.SymbolHistogram.add(unsigned(Kind::Name));
return symbol;
}
/// Creates a new protocol symbol.
Symbol Symbol::forProtocol(const ProtocolDecl *proto,
RewriteContext &ctx) {
DEBUG_ASSERT(proto != nullptr);
llvm::FoldingSetNodeID id;
id.AddInteger(unsigned(Kind::Protocol));
id.AddPointer(proto);
void *insertPos = nullptr;
if (auto *symbol = ctx.Symbols.FindNodeOrInsertPos(id, insertPos))
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(0, 0);
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(proto);
if (CONDITIONAL_ASSERT_enabled()) {
llvm::FoldingSetNodeID newID;
symbol->Profile(newID);
ASSERT(id == newID);
}
ctx.Symbols.InsertNode(symbol, insertPos);
ctx.SymbolHistogram.add(unsigned(Kind::Protocol));
return symbol;
}
/// Creates a new associated type symbol.
Symbol Symbol::forAssociatedType(const ProtocolDecl *proto,
Identifier name,
RewriteContext &ctx) {
llvm::FoldingSetNodeID id;
id.AddInteger(unsigned(Kind::AssociatedType));
id.AddPointer(proto);
id.AddPointer(name.get());
void *insertPos = nullptr;
if (auto *symbol = ctx.Symbols.FindNodeOrInsertPos(id, insertPos))
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(0, 0);
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(proto, name);
if (CONDITIONAL_ASSERT_enabled()) {
llvm::FoldingSetNodeID newID;
symbol->Profile(newID);
ASSERT(id == newID);
}
ctx.Symbols.InsertNode(symbol, insertPos);
ctx.SymbolHistogram.add(unsigned(Kind::AssociatedType));
return symbol;
}
/// Creates a generic parameter symbol, representing a generic
/// parameter in the top-level generic signature from which the
/// rewrite system is built.
Symbol Symbol::forGenericParam(GenericTypeParamType *param,
RewriteContext &ctx) {
ASSERT(param->isCanonical());
llvm::FoldingSetNodeID id;
id.AddInteger(unsigned(Kind::GenericParam));
id.AddPointer(param);
void *insertPos = nullptr;
if (auto *symbol = ctx.Symbols.FindNodeOrInsertPos(id, insertPos))
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(0, 0);
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(param);
if (CONDITIONAL_ASSERT_enabled()) {
llvm::FoldingSetNodeID newID;
symbol->Profile(newID);
ASSERT(id == newID);
}
ctx.Symbols.InsertNode(symbol, insertPos);
ctx.SymbolHistogram.add(unsigned(Kind::GenericParam));
return symbol;
}
Symbol Symbol::forShape(RewriteContext &ctx) {
if (auto *symbol = ctx.TheShapeSymbol)
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(0, 0);
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(Storage::ForShape());
return (ctx.TheShapeSymbol = symbol);
}
Symbol Symbol::forPackElement(RewriteContext &ctx) {
if (auto *symbol = ctx.ThePackElementSymbol)
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(0, 0);
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(Storage::ForPackElement());
return (ctx.ThePackElementSymbol = symbol);
}
/// Creates a layout symbol, representing a layout constraint.
Symbol Symbol::forLayout(LayoutConstraint layout,
RewriteContext &ctx) {
llvm::FoldingSetNodeID id;
id.AddInteger(unsigned(Kind::Layout));
id.AddPointer(layout.getPointer());
void *insertPos = nullptr;
if (auto *symbol = ctx.Symbols.FindNodeOrInsertPos(id, insertPos))
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(0, 0);
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(layout);
if (CONDITIONAL_ASSERT_enabled()) {
llvm::FoldingSetNodeID newID;
symbol->Profile(newID);
ASSERT(id == newID);
}
ctx.Symbols.InsertNode(symbol, insertPos);
ctx.SymbolHistogram.add(unsigned(Kind::Layout));
return symbol;
}
/// Creates a superclass symbol, representing a superclass constraint.
Symbol Symbol::forSuperclass(CanType type, ArrayRef<Term> substitutions,
RewriteContext &ctx) {
llvm::FoldingSetNodeID id;
id.AddInteger(unsigned(Kind::Superclass));
id.AddPointer(type.getPointer());
id.AddInteger(unsigned(substitutions.size()));
for (auto substitution : substitutions)
id.AddPointer(substitution.getOpaquePointer());
void *insertPos = nullptr;
if (auto *symbol = ctx.Symbols.FindNodeOrInsertPos(id, insertPos))
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(
1, substitutions.size());
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(Kind::Superclass, type, substitutions);
if (CONDITIONAL_ASSERT_enabled()) {
llvm::FoldingSetNodeID newID;
symbol->Profile(newID);
ASSERT(id == newID);
}
ctx.Symbols.InsertNode(symbol, insertPos);
ctx.SymbolHistogram.add(unsigned(Kind::Superclass));
return symbol;
}
/// Creates a concrete type symbol, representing a superclass constraint.
Symbol Symbol::forConcreteType(CanType type, ArrayRef<Term> substitutions,
RewriteContext &ctx) {
llvm::FoldingSetNodeID id;
id.AddInteger(unsigned(Kind::ConcreteType));
id.AddPointer(type.getPointer());
id.AddInteger(unsigned(substitutions.size()));
for (auto substitution : substitutions)
id.AddPointer(substitution.getOpaquePointer());
void *insertPos = nullptr;
if (auto *symbol = ctx.Symbols.FindNodeOrInsertPos(id, insertPos))
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(
1, substitutions.size());
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(Kind::ConcreteType, type, substitutions);
if (CONDITIONAL_ASSERT_enabled()) {
llvm::FoldingSetNodeID newID;
symbol->Profile(newID);
ASSERT(id == newID);
}
ctx.Symbols.InsertNode(symbol, insertPos);
ctx.SymbolHistogram.add(unsigned(Kind::ConcreteType));
return symbol;
}
/// Creates a concrete type symbol, representing a superclass constraint.
Symbol Symbol::forConcreteConformance(CanType type,
ArrayRef<Term> substitutions,
const ProtocolDecl *proto,
RewriteContext &ctx) {
llvm::FoldingSetNodeID id;
id.AddInteger(unsigned(Kind::ConcreteConformance));
id.AddPointer(proto);
id.AddPointer(type.getPointer());
id.AddInteger(unsigned(substitutions.size()));
for (auto substitution : substitutions)
id.AddPointer(substitution.getOpaquePointer());
void *insertPos = nullptr;
if (auto *symbol = ctx.Symbols.FindNodeOrInsertPos(id, insertPos))
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(
1, substitutions.size());
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(type, substitutions, proto);
if (CONDITIONAL_ASSERT_enabled()) {
llvm::FoldingSetNodeID newID;
symbol->Profile(newID);
ASSERT(id == newID);
}
ctx.Symbols.InsertNode(symbol, insertPos);
ctx.SymbolHistogram.add(unsigned(Kind::ConcreteConformance));
return symbol;
}
/// Given that this symbol is the first symbol of a term, return the
/// "domain" of the term.
///
/// - If the first symbol is a protocol symbol [P] or associated type
/// symbol [P:T], the domain is P.
/// - If the first symbol is a generic parameter symbol, the domain is
/// nullptr.
/// - Anything else will assert.
const ProtocolDecl *Symbol::getRootProtocol() const {
switch (getKind()) {
case Symbol::Kind::Protocol:
case Symbol::Kind::AssociatedType:
return getProtocol();
case Symbol::Kind::GenericParam:
case Symbol::Kind::PackElement:
return nullptr;
case Symbol::Kind::Name:
case Symbol::Kind::Layout:
case Symbol::Kind::Superclass:
case Symbol::Kind::ConcreteType:
case Symbol::Kind::ConcreteConformance:
case Symbol::Kind::Shape:
break;
}
llvm_unreachable("Bad root symbol");
}
/// Linear order on symbols, returning -1, 0, 1 or None if the symbols are
/// incomparable.
///
/// First, we order different kinds as follows, from smallest to largest:
///
/// - ConcreteConformance
/// - Protocol
/// - AssociatedType
/// - GenericParam
/// - Name
/// - Shape
/// - PackElement
/// - Layout
/// - Superclass
/// - ConcreteType
///
/// Then we break ties when both symbols have the same kind as follows:
///
/// * For associated type symbols, we compare the name first, followed by
/// the protocols, which are compared just like protocol symbols,
/// described below.
///
/// * For generic parameter symbols, we first order by depth, then index.
///
/// * For unbound name symbols, we compare identifiers lexicographically.
///
/// * For protocol symbols, protocols with more inherited protocols are ordered
/// before those with fewer inherited protocols. The type order defined in
/// TypeDecl::compare() is used to break ties; based on the protocol name
/// and parent module.
///
/// * For layout symbols, we use LayoutConstraint::compare().
///
/// * For concrete conformance symbols with distinct protocols, we compare
/// the protocols.
///
/// All other symbol kinds are incomparable, in which case we return None.
std::optional<int> Symbol::compare(Symbol other, RewriteContext &ctx) const {
// Exit early if the symbols are equal.
if (Ptr == other.Ptr)
return 0;
auto kind = getKind();
auto otherKind = other.getKind();
if (kind != otherKind)
return int(kind) < int(otherKind) ? -1 : 1;
int result = 0;
switch (kind) {
case Kind::Name:
result = getName().compare(other.getName());
break;
case Kind::Protocol:
result = ctx.compareProtocols(getProtocol(), other.getProtocol());
break;
case Kind::AssociatedType: {
if (getName() != other.getName())
return getName().compare(other.getName());
result = ctx.compareProtocols(getProtocol(), other.getProtocol());
break;
}
case Kind::Shape:
case Kind::PackElement:
case Kind::GenericParam: {
auto *param = getGenericParam();
auto *otherParam = other.getGenericParam();
if (param->getDepth() != otherParam->getDepth())
return param->getDepth() < otherParam->getDepth() ? -1 : 1;
if (param->getIndex() != otherParam->getIndex())
return param->getIndex() < otherParam->getIndex() ? -1 : 1;
break;
}
case Kind::Layout:
result = getLayoutConstraint().compare(other.getLayoutConstraint());
break;
case Kind::ConcreteConformance: {
auto *proto = getProtocol();
auto *otherProto = other.getProtocol();
// For concrete conformance symbols, order by protocol first.
result = ctx.compareProtocols(proto, otherProto);
if (result != 0)
return result;
// Then, check if they have the same concrete type and order
// substitutions.
LLVM_FALLTHROUGH;
}
case Kind::Superclass:
case Kind::ConcreteType: {
if (getConcreteType() == other.getConcreteType()) {
// If the concrete types are identical, compare substitution terms.
ASSERT(getSubstitutions().size() == other.getSubstitutions().size());
for (unsigned i : indices(getSubstitutions())) {
auto term = getSubstitutions()[i];
auto otherTerm = other.getSubstitutions()[i];
std::optional<int> result = term.compare(otherTerm, ctx);
if (!result.has_value() || *result != 0)
return result;
}
break;
}
// We don't support comparing arbitrary concrete types.
return std::nullopt;
}
}
if (result == 0) {
ABORT([&](auto &out) {
out << "Two distinct symbols should not compare equal\n";
out << "LHS: " << *this << "\n";
out << "RHS: " << other;
});
}
return result;
}
Symbol Symbol::withConcreteSubstitutions(
ArrayRef<Term> substitutions,
RewriteContext &ctx) const {
switch (getKind()) {
case Kind::Superclass:
return Symbol::forSuperclass(getConcreteType(), substitutions, ctx);
case Kind::ConcreteType:
return Symbol::forConcreteType(getConcreteType(), substitutions, ctx);
case Kind::ConcreteConformance:
return Symbol::forConcreteConformance(getConcreteType(), substitutions,
getProtocol(), ctx);
case Kind::GenericParam:
case Kind::Name:
case Kind::Protocol:
case Kind::AssociatedType:
case Kind::Shape:
case Kind::PackElement:
case Kind::Layout:
break;
}
ABORT([&](auto &out) {
out << "Bad symbol kind: " << *this;
});
}
/// For a superclass or concrete type symbol
///
/// [concrete: Foo<X1, ..., Xn>]
/// [superclass: Foo<X1, ..., Xn>]
///
/// Return a new symbol where the function fn is applied to each of the
/// substitutions:
///
/// [concrete: Foo<fn(X1), ..., fn(Xn)>]
/// [superclass: Foo<fn(X1), ..., fn(Xn)>]
///
/// Asserts if this is not a superclass or concrete type symbol.
Symbol Symbol::transformConcreteSubstitutions(
llvm::function_ref<Term(Term)> fn,
RewriteContext &ctx) const {
ASSERT(hasSubstitutions());
if (getSubstitutions().empty())
return *this;
bool anyChanged = false;
SmallVector<Term, 2> substitutions;
for (auto term : getSubstitutions()) {
auto newTerm = fn(term);
if (newTerm != term)
anyChanged = true;
substitutions.push_back(newTerm);
}
if (!anyChanged)
return *this;
return withConcreteSubstitutions(substitutions, ctx);
}
bool Symbol::containsNameSymbols() const {
for (auto t : getSubstitutions()) {
if (t.containsNameSymbols())
return true;
}
return false;
}
/// Print the symbol using our mnemonic representation.
void Symbol::dump(llvm::raw_ostream &out) const {
llvm::DenseMap<CanType, Identifier> substitutionNames;
if (hasSubstitutions()) {
auto &ctx = getConcreteType()->getASTContext();
for (unsigned index : indices(getSubstitutions())) {
Term substitution = getSubstitutions()[index];
std::string s;
llvm::raw_string_ostream os(s);
os << substitution;
auto key = CanType(GenericTypeParamType::getType(0, index, ctx));
substitutionNames[key] = ctx.getIdentifier(s);
}
}
PrintOptions opts;
opts.AlternativeTypeNames = &substitutionNames;
opts.OpaqueReturnTypePrinting =
PrintOptions::OpaqueReturnTypePrintingMode::StableReference;
switch (getKind()) {
case Kind::Name:
out << getName();
return;
case Kind::Protocol:
out << "[" << getProtocol()->getName() << "]";
return;
case Kind::AssociatedType: {
out << "[" << getProtocol()->getName() << ":" << getName() << "]";
return;
}
case Kind::GenericParam: {
out << Type(getGenericParam());
return;
}
case Kind::Layout:
out << "[layout: ";
getLayoutConstraint()->print(out);
out << "]";
return;
case Kind::Superclass:
out << "[superclass: ";
getConcreteType().print(out, opts);
out << "]";
return;
case Kind::ConcreteType:
out << "[concrete: ";
getConcreteType().print(out, opts);
out << "]";
return;
case Kind::ConcreteConformance:
out << "[concrete: ";
getConcreteType().print(out, opts);
out << " : ";
out << getProtocol()->getName();
out << "]";
return;
case Kind::Shape: {
out << "[shape]";
return;
}
case Kind::PackElement: {
out << "[element]";
return;
}
}
llvm_unreachable("Bad symbol kind");
}
void Symbol::Storage::Profile(llvm::FoldingSetNodeID &id) const {
id.AddInteger(unsigned(Kind));
switch (Kind) {
case Symbol::Kind::Name:
id.AddPointer(Name.get());
return;
case Symbol::Kind::Layout:
id.AddPointer(Layout.getPointer());
return;
case Symbol::Kind::Protocol:
id.AddPointer(Proto);
return;
case Symbol::Kind::GenericParam:
case Symbol::Kind::PackElement:
id.AddPointer(GenericParam);
return;
case Symbol::Kind::Shape:
// Nothing more to add.
return;
case Symbol::Kind::AssociatedType: {
id.AddPointer(Proto);
id.AddPointer(Name.get());
return;
}
case Symbol::Kind::Superclass:
case Symbol::Kind::ConcreteType: {
id.AddPointer(ConcreteType.getPointer());
id.AddInteger(getNumSubstitutions());
for (auto term : getSubstitutions())
id.AddPointer(term.getOpaquePointer());
return;
}
case Symbol::Kind::ConcreteConformance: {
id.AddPointer(Proto);
id.AddPointer(ConcreteType.getPointer());
id.AddInteger(getNumSubstitutions());
for (auto term : getSubstitutions())
id.AddPointer(term.getOpaquePointer());
return;
}
}
llvm_unreachable("Bad symbol kind");
}