mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Key paths can't reference non-escapable or non-copyable storage declarations, so we don't need to refer to them resiliently, and can elide their property descriptors. However, declarations may still be conditionally Copyable and Escapable, and if so, then they still need a property descriptor for resilient key path references. When a property or subscript can be used in a context where it is fully Copyable and Escapable, emit the property descriptor in a generic environment constrained by the necessary conditional constraints. Fixes rdar://151628396.
560 lines
20 KiB
C++
560 lines
20 KiB
C++
//===--- SIL.cpp - Implements random SIL functionality --------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/SIL/FormalLinkage.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILDeclRef.h"
|
|
#include "swift/SIL/SILType.h"
|
|
#include "swift/SIL/SILUndef.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/AnyFunctionRef.h"
|
|
#include "swift/AST/ConformanceLookup.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/Pattern.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/AST/ProtocolConformance.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/ClangImporter/ClangModule.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
|
|
using namespace swift;
|
|
|
|
FormalLinkage swift::getDeclLinkage(const ValueDecl *D) {
|
|
const DeclContext *fileContext = D->getDeclContext()->getModuleScopeContext();
|
|
|
|
// Clang declarations are public and can't be assured of having a
|
|
// unique defining location.
|
|
if (isa<ClangModuleUnit>(fileContext) &&
|
|
!D->getObjCImplementationDecl())
|
|
return FormalLinkage::PublicNonUnique;
|
|
|
|
switch (D->getEffectiveAccess()) {
|
|
case AccessLevel::Package:
|
|
return FormalLinkage::PackageUnique;
|
|
case AccessLevel::Public:
|
|
case AccessLevel::Open:
|
|
return FormalLinkage::PublicUnique;
|
|
case AccessLevel::Internal:
|
|
return FormalLinkage::HiddenUnique;
|
|
case AccessLevel::FilePrivate:
|
|
case AccessLevel::Private:
|
|
return FormalLinkage::Private;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled access level in switch.");
|
|
}
|
|
|
|
SILLinkage swift::getSILLinkage(FormalLinkage linkage,
|
|
ForDefinition_t forDefinition) {
|
|
switch (linkage) {
|
|
case FormalLinkage::PublicUnique:
|
|
return (forDefinition ? SILLinkage::Public : SILLinkage::PublicExternal);
|
|
|
|
case FormalLinkage::PublicNonUnique:
|
|
// FIXME: any place we have to do this that actually requires
|
|
// uniqueness is buggy.
|
|
return (forDefinition ? SILLinkage::Shared : SILLinkage::PublicExternal);
|
|
|
|
case FormalLinkage::PackageUnique:
|
|
return (forDefinition ? SILLinkage::Package : SILLinkage::PackageExternal);
|
|
|
|
case FormalLinkage::HiddenUnique:
|
|
return (forDefinition ? SILLinkage::Hidden : SILLinkage::HiddenExternal);
|
|
|
|
case FormalLinkage::Private:
|
|
return SILLinkage::Private;
|
|
}
|
|
llvm_unreachable("bad formal linkage");
|
|
}
|
|
|
|
SILLinkage
|
|
swift::getLinkageForProtocolConformance(const ProtocolConformance *C,
|
|
ForDefinition_t definition) {
|
|
// If the conformance was synthesized, give it shared linkage.
|
|
if (C->getRootConformance()->isSynthesized())
|
|
return SILLinkage::Shared;
|
|
|
|
auto typeDecl = C->getDeclContext()->getSelfNominalTypeDecl();
|
|
AccessLevel access = std::min(C->getProtocol()->getEffectiveAccess(),
|
|
typeDecl->getEffectiveAccess());
|
|
switch (access) {
|
|
case AccessLevel::Private:
|
|
case AccessLevel::FilePrivate:
|
|
return SILLinkage::Private;
|
|
case AccessLevel::Internal:
|
|
return (definition ? SILLinkage::Hidden : SILLinkage::HiddenExternal);
|
|
case AccessLevel::Package:
|
|
return (definition ? SILLinkage::Package : SILLinkage::PackageExternal);
|
|
case AccessLevel::Public:
|
|
case AccessLevel::Open:
|
|
return (definition ? SILLinkage::Public : SILLinkage::PublicExternal);
|
|
}
|
|
}
|
|
|
|
bool SILModule::isTypeMetadataAccessible(CanType type) {
|
|
// SILModules built for the debugger have special powers to access metadata
|
|
// for types in other files/modules.
|
|
if (getASTContext().LangOpts.DebuggerSupport)
|
|
return true;
|
|
|
|
assert(type->isLegalFormalType());
|
|
|
|
return !type.findIf([&](CanType type) {
|
|
// Note that this function returns true if the type is *illegal* to use.
|
|
|
|
// Ignore non-nominal types -- except for opaque result types which can be
|
|
// private and in a different translation unit in which case they can't be
|
|
// accessed.
|
|
ValueDecl *decl = type.getNominalOrBoundGenericNominal();
|
|
if (!decl)
|
|
decl = isa<OpaqueTypeArchetypeType>(type)
|
|
? cast<OpaqueTypeArchetypeType>(type)->getDecl()
|
|
: nullptr;
|
|
if (!decl)
|
|
return false;
|
|
|
|
// Check whether the declaration is inaccessible from the current context.
|
|
switch (getDeclLinkage(decl)) {
|
|
|
|
// Public declarations are accessible from everywhere.
|
|
case FormalLinkage::PublicUnique:
|
|
case FormalLinkage::PublicNonUnique:
|
|
case FormalLinkage::PackageUnique:
|
|
return false;
|
|
|
|
// Hidden declarations are inaccessible from different modules.
|
|
case FormalLinkage::HiddenUnique:
|
|
return (decl->getModuleContext() != getSwiftModule());
|
|
|
|
// Private declarations are inaccessible from different files unless
|
|
// this is WMO and we're in the same module.
|
|
case FormalLinkage::Private: {
|
|
// The associated DC should be either a SourceFile or, in WMO mode,
|
|
// a ModuleDecl. In the WMO modes, IRGen will ensure that private
|
|
// declarations are usable throughout the module. Therefore, in
|
|
// either case we just need to make sure that the declaration comes
|
|
// from within the associated DC.
|
|
auto declDC = decl->getDeclContext();
|
|
return !(declDC == AssociatedDeclContext ||
|
|
declDC->isChildContextOf(AssociatedDeclContext));
|
|
}
|
|
}
|
|
llvm_unreachable("bad linkage");
|
|
});
|
|
}
|
|
|
|
/// Return the formal linkage of the component restrictions of this
|
|
/// generic signature. This is the appropriate linkage for a lazily-
|
|
/// emitted entity derived from the generic signature.
|
|
///
|
|
/// This function never returns PublicUnique.
|
|
FormalLinkage swift::getGenericSignatureLinkage(CanGenericSignature sig) {
|
|
// This can only be PublicNonUnique or HiddenUnique. Signatures can
|
|
// never be PublicUnique in the first place, and we short-circuit on
|
|
// Private. So we only ever update it when we see HiddenUnique linkage.
|
|
FormalLinkage linkage = FormalLinkage::PublicNonUnique;
|
|
|
|
for (auto &req : sig.getRequirements()) {
|
|
// The first type can be ignored because it should always be
|
|
// a dependent type.
|
|
|
|
switch (req.getKind()) {
|
|
case RequirementKind::SameShape:
|
|
case RequirementKind::Layout:
|
|
continue;
|
|
|
|
case RequirementKind::Conformance:
|
|
case RequirementKind::SameType:
|
|
case RequirementKind::Superclass:
|
|
switch (getTypeLinkage(CanType(req.getSecondType()))) {
|
|
case FormalLinkage::PublicUnique:
|
|
case FormalLinkage::PublicNonUnique:
|
|
case FormalLinkage::PackageUnique:
|
|
continue;
|
|
case FormalLinkage::HiddenUnique:
|
|
linkage = FormalLinkage::HiddenUnique;
|
|
continue;
|
|
case FormalLinkage::Private:
|
|
// We can short-circuit with this.
|
|
return linkage;
|
|
}
|
|
}
|
|
}
|
|
|
|
return linkage;
|
|
}
|
|
|
|
/// Return the formal linkage of the given formal type.
|
|
/// This in the appropriate linkage for a lazily-emitted entity
|
|
/// derived from the type.
|
|
///
|
|
/// This function never returns PublicUnique, which means that,
|
|
/// even if a type is simply a reference to a non-generic
|
|
/// uniquely-emitted nominal type, the formal linkage of that
|
|
/// type may differ from the formal linkage of the underlying
|
|
/// type declaration.
|
|
FormalLinkage swift::getTypeLinkage(CanType t) {
|
|
assert(t->isLegalFormalType());
|
|
|
|
class Walker : public TypeWalker {
|
|
public:
|
|
FormalLinkage Linkage;
|
|
Walker() : Linkage(FormalLinkage::PublicNonUnique) {}
|
|
|
|
Action walkToTypePre(Type ty) override {
|
|
// Non-nominal types are always available.
|
|
auto decl = ty->getNominalOrBoundGenericNominal();
|
|
if (!decl)
|
|
return Action::Continue;
|
|
|
|
Linkage = std::max(Linkage, getDeclLinkage(decl));
|
|
return Action::Continue;
|
|
}
|
|
};
|
|
|
|
Walker w;
|
|
t.walk(w);
|
|
return w.Linkage;
|
|
}
|
|
|
|
/// Answer whether IRGen's emitTypeMetadataForLayout can fetch metadata for
|
|
/// a type, which is the necessary condition for being able to do value
|
|
/// operations on the type using dynamic metadata.
|
|
static bool isTypeMetadataForLayoutAccessible(SILModule &M, SILType type) {
|
|
// Look through types that aren't necessarily legal formal types:
|
|
|
|
// - tuples
|
|
if (auto tupleType = type.getAs<TupleType>()) {
|
|
for (auto index : indices(tupleType.getElementTypes())) {
|
|
if (!isTypeMetadataForLayoutAccessible(M, type.getTupleElementType(index)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// - optionals
|
|
if (auto objType = type.getOptionalObjectType()) {
|
|
return isTypeMetadataForLayoutAccessible(M, objType);
|
|
}
|
|
|
|
// - function types
|
|
if (type.is<SILFunctionType>())
|
|
return true;
|
|
|
|
// - metatypes
|
|
if (type.is<AnyMetatypeType>())
|
|
return true;
|
|
|
|
// - pack expansion types
|
|
if (auto expansionType = type.getAs<PackExpansionType>()) {
|
|
auto patternType = SILType::getPrimitiveType(expansionType.getPatternType(),
|
|
type.getCategory());
|
|
return isTypeMetadataForLayoutAccessible(M, patternType);
|
|
}
|
|
|
|
// - lowered pack types
|
|
if (auto packType = type.getAs<SILPackType>()) {
|
|
for (auto eltType : packType.getElementTypes()) {
|
|
if (!isTypeMetadataForLayoutAccessible(
|
|
M, SILType::getPrimitiveAddressType(eltType)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, check that we can fetch the type metadata.
|
|
return M.isTypeMetadataAccessible(type.getASTType());
|
|
}
|
|
|
|
/// Can we perform value operations on the given type? We have no way
|
|
/// of doing value operations on resilient-layout types from other modules
|
|
/// that are ABI-private to their defining module. But if the type is not
|
|
/// ABI-private, we can always at least fetch its metadata and use the
|
|
/// value witness table stored there.
|
|
bool SILModule::isTypeABIAccessible(SILType type,
|
|
TypeExpansionContext forExpansion) {
|
|
// Fixed-ABI types can have value operations done without metadata.
|
|
if (Types.getTypeLowering(type, forExpansion).isFixedABI())
|
|
return true;
|
|
|
|
assert(!type.is<ReferenceStorageType>() &&
|
|
!type.is<SILFunctionType>() &&
|
|
!type.is<AnyMetatypeType>() &&
|
|
"unexpected SIL lowered-only type with non-fixed layout");
|
|
|
|
// Otherwise, we need to be able to fetch layout-metadata for the type.
|
|
return isTypeMetadataForLayoutAccessible(type);
|
|
}
|
|
|
|
bool SILModule::isTypeMetadataForLayoutAccessible(SILType type) {
|
|
if (type.is<ReferenceStorageType>() || type.is<SILFunctionType>() ||
|
|
type.is<AnyMetatypeType>() || type.is<SILPackType>())
|
|
return false;
|
|
|
|
return ::isTypeMetadataForLayoutAccessible(*this, type);
|
|
}
|
|
|
|
// Given the type `ty`, which should be in the generic environment of the signature
|
|
// `sig`, return a generic signature with all of the requirements of `sig`,
|
|
// combined with all of the requirements necessary for `ty` to be both
|
|
// `Copyable` and `Escapable`, if possible. Returns `nullopt` if the type
|
|
// can never be both Copyable and Escapable.
|
|
static std::optional<GenericSignature>
|
|
getKeyPathSupportingGenericSignature(Type ty, GenericSignature contextSig) {
|
|
auto &C = ty->getASTContext();
|
|
|
|
// If the type is already unconditionally Copyable and Escapable, we don't
|
|
// need any further requirements.
|
|
if (!ty->isNoncopyable() && ty->isEscapable()) {
|
|
return contextSig;
|
|
}
|
|
|
|
ProtocolConformanceRef copyable, escapable;
|
|
auto copyableProtocol = C.getProtocol(KnownProtocolKind::Copyable);
|
|
auto escapableProtocol = C.getProtocol(KnownProtocolKind::Escapable);
|
|
|
|
// If the type is an archetype, then it just needs Copyable and Escapable
|
|
// constraints imposed.
|
|
if (ty->is<ArchetypeType>()) {
|
|
copyable = ProtocolConformanceRef::forAbstract(ty->mapTypeOutOfContext(),
|
|
copyableProtocol);
|
|
escapable = ProtocolConformanceRef::forAbstract(ty->mapTypeOutOfContext(),
|
|
escapableProtocol);
|
|
} else {
|
|
// Look for any conditional conformances.
|
|
copyable = lookupConformance(ty, copyableProtocol);
|
|
escapable = lookupConformance(ty, escapableProtocol);
|
|
}
|
|
|
|
// If the type is never copyable or escapable, that's it.
|
|
if (copyable.isInvalid() || escapable.isInvalid()) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Otherwise, let's see if we get a viable generic signature combining the
|
|
// requirements for those conformances with the requirements of the
|
|
// declaration context.
|
|
SmallVector<Requirement, 2> ceRequirements;
|
|
|
|
auto getRequirementsFromConformance = [&](ProtocolConformanceRef ref) {
|
|
if (ref.isAbstract()) {
|
|
// The only requirements are that the abstract type itself be copyable
|
|
// and escapable.
|
|
ceRequirements.push_back(Requirement(RequirementKind::Conformance,
|
|
ty->mapTypeOutOfContext(), copyableProtocol->getDeclaredType()));
|
|
ceRequirements.push_back(Requirement(RequirementKind::Conformance,
|
|
ty->mapTypeOutOfContext(), escapableProtocol->getDeclaredType()));
|
|
return;
|
|
}
|
|
|
|
if (!ref.isConcrete()) {
|
|
return;
|
|
}
|
|
auto conformance = ref.getConcrete();
|
|
|
|
for (auto reqt : conformance->getRootConformance()
|
|
->getConditionalRequirements()) {
|
|
ceRequirements.push_back(reqt);
|
|
}
|
|
};
|
|
getRequirementsFromConformance(copyable);
|
|
getRequirementsFromConformance(escapable);
|
|
|
|
auto regularSignature = buildGenericSignatureWithError(C,
|
|
contextSig,
|
|
{},
|
|
std::move(ceRequirements),
|
|
/*allowInverses*/ false);
|
|
|
|
// If the resulting signature has conflicting requirements, then it is
|
|
// impossible for the type to be copyable and equatable.
|
|
if (regularSignature.getInt()) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Otherwise, we have the signature we're looking for.
|
|
return regularSignature.getPointer();
|
|
}
|
|
|
|
static std::optional<GenericSignature>
|
|
getKeyPathSupportingGenericSignatureForValueType(Type ty,
|
|
GenericSignature sig) {
|
|
std::optional<GenericSignature> contextSig = sig;
|
|
|
|
// Visit lowered positions.
|
|
if (auto tupleTy = ty->getAs<TupleType>()) {
|
|
for (auto eltTy : tupleTy->getElementTypes()) {
|
|
if (eltTy->is<PackExpansionType>())
|
|
return std::nullopt;
|
|
|
|
contextSig = getKeyPathSupportingGenericSignatureForValueType(
|
|
eltTy, *contextSig);
|
|
if (!contextSig)
|
|
return std::nullopt;
|
|
}
|
|
|
|
return contextSig;
|
|
}
|
|
|
|
if (auto objTy = ty->getOptionalObjectType())
|
|
ty = objTy;
|
|
|
|
// FIXME: Remove this once isUnimplementableVariadicFunctionAbstraction()
|
|
// goes away in SILGenPoly.cpp.
|
|
if (auto funcTy = ty->getAs<FunctionType>()) {
|
|
for (auto param : funcTy->getParams()) {
|
|
auto paramTy = param.getPlainType();
|
|
if (paramTy->is<PackExpansionType>())
|
|
return std::nullopt;
|
|
|
|
contextSig = getKeyPathSupportingGenericSignatureForValueType(paramTy,
|
|
*contextSig);
|
|
if (!contextSig) {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
contextSig = getKeyPathSupportingGenericSignatureForValueType(funcTy->getResult(),
|
|
*contextSig);
|
|
|
|
if (!contextSig) {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
// Noncopyable types aren't supported by key paths in their current form.
|
|
// They would also need a new ABI that's yet to be implemented in order to
|
|
// be properly supported, so let's suppress the descriptor for now if either
|
|
// the container or storage type of the declaration is non-copyable.
|
|
return getKeyPathSupportingGenericSignature(ty, *contextSig);
|
|
}
|
|
|
|
std::optional<GenericSignature>
|
|
AbstractStorageDecl::getPropertyDescriptorGenericSignature() const {
|
|
// The storage needs a descriptor if it sits at a module's ABI boundary,
|
|
// meaning it has public linkage, and it is eligible to be part of a key path.
|
|
|
|
auto contextTy = getDeclContext()->getDeclaredTypeInContext();
|
|
auto contextSig = getInnermostDeclContext()->getGenericSignatureOfContext();
|
|
|
|
// If the root type is never `Copyable` or `Escapable`, then instance
|
|
// members can't be used in key paths, at least as they are implemented
|
|
// today.
|
|
if (!isStatic() && contextTy) {
|
|
auto ceContextSig = getKeyPathSupportingGenericSignature(contextTy,
|
|
contextSig);
|
|
if (!ceContextSig) {
|
|
return std::nullopt;
|
|
}
|
|
contextSig = *ceContextSig;
|
|
}
|
|
|
|
// TODO: Global properties ought to eventually be referenceable
|
|
// as key paths from ().
|
|
if (!getDeclContext()->isTypeContext())
|
|
return std::nullopt;
|
|
|
|
// Protocol requirements do not need property descriptors.
|
|
if (isa<ProtocolDecl>(getDeclContext()))
|
|
return std::nullopt;
|
|
|
|
// Static properties declared directly in protocol do not need
|
|
// descriptors as existential Any.Type will not resolve to a value.
|
|
if (isStatic() && isa<ProtocolDecl>(getDeclContext()))
|
|
return std::nullopt;
|
|
|
|
// FIXME: We should support properties and subscripts with '_read' accessors;
|
|
// 'get' is not part of the opaque accessor set there.
|
|
auto *getter = getOpaqueAccessor(AccessorKind::Get);
|
|
if (!getter)
|
|
return std::nullopt;
|
|
|
|
// If the getter is mutating, we cannot form a keypath to it at all.
|
|
if (isGetterMutating())
|
|
return std::nullopt;
|
|
|
|
// If the storage is an ABI-compatible override of another declaration, we're
|
|
// not going to be emitting a property descriptor either.
|
|
if (!isValidKeyPathComponent())
|
|
return std::nullopt;
|
|
|
|
// TODO: If previous versions of an ABI-stable binary needed the descriptor,
|
|
// then we still do.
|
|
|
|
// Check the linkage of the declaration.
|
|
auto getterLinkage = SILDeclRef(getter).getLinkage(ForDefinition);
|
|
|
|
switch (getterLinkage) {
|
|
case SILLinkage::Public:
|
|
case SILLinkage::PublicNonABI:
|
|
case SILLinkage::Package:
|
|
case SILLinkage::PackageNonABI:
|
|
// We may need a descriptor.
|
|
break;
|
|
|
|
case SILLinkage::Shared:
|
|
case SILLinkage::Private:
|
|
case SILLinkage::Hidden:
|
|
// Don't need a public descriptor.
|
|
return std::nullopt;
|
|
|
|
case SILLinkage::HiddenExternal:
|
|
case SILLinkage::PublicExternal:
|
|
case SILLinkage::PackageExternal:
|
|
llvm_unreachable("should be definition linkage?");
|
|
}
|
|
|
|
auto typeInContext = contextSig.getGenericEnvironment()->mapTypeIntoContext(
|
|
getValueInterfaceType());
|
|
auto valueTypeSig = getKeyPathSupportingGenericSignatureForValueType(typeInContext, contextSig);
|
|
if (!valueTypeSig) {
|
|
return std::nullopt;
|
|
}
|
|
contextSig = *valueTypeSig;
|
|
|
|
// Subscripts with inout arguments (FIXME)and reabstracted arguments(/FIXME)
|
|
// don't have descriptors either.
|
|
if (auto sub = dyn_cast<SubscriptDecl>(this)) {
|
|
for (auto *index : *sub->getIndices()) {
|
|
// Keypaths can't capture inout indices.
|
|
if (index->isInOut()) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
auto indexTy = index->getInterfaceType()
|
|
->getReducedType(sub->getGenericSignatureOfContext());
|
|
|
|
// TODO: Handle reabstraction and tuple explosion in thunk generation.
|
|
// This wasn't previously a concern because anything that was Hashable
|
|
// had only one abstraction level and no explosion.
|
|
|
|
if (isa<TupleType>(indexTy))
|
|
return std::nullopt;
|
|
|
|
auto indexObjTy = indexTy;
|
|
if (auto objTy = indexObjTy.getOptionalObjectType())
|
|
indexObjTy = objTy;
|
|
|
|
if (isa<AnyFunctionType>(indexObjTy)
|
|
|| isa<AnyMetatypeType>(indexObjTy))
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
return contextSig;
|
|
}
|