Files
swift-mirror/lib/SIL/IR/SILBuilder.cpp
Doug Gregor e0b52cd20e [SIL] Extend checked-cast instructions with "prohibit isolated conformances" flag
When performing a dynamic cast to an existential type that satisfies
(Metatype)Sendable, it is unsafe to allow isolated conformances of any
kind to satisfy protocol requirements for the existential. Identify
these cases and mark the corresponding cast instructions with a new flag,
`[prohibit_isolated_conformances]` that will be used to indicate to the
runtime that isolated conformances need to be rejected.
2025-03-26 22:31:47 -07:00

848 lines
34 KiB
C++

//===--- SILBuilder.cpp - Class for creating SIL Constructs ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILBuilder.h"
#include "swift/AST/Expr.h"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILGlobalVariable.h"
using namespace swift;
extern llvm::cl::opt<bool> SILPrintDebugInfo;
//===----------------------------------------------------------------------===//
// SILBuilder Implementation
//===----------------------------------------------------------------------===//
SILBuilder::SILBuilder(SILGlobalVariable *GlobVar,
SmallVectorImpl<SILInstruction *> *InsertedInstrs)
: TempContext(GlobVar->getModule(), InsertedInstrs), C(TempContext),
F(nullptr) {
setInsertionPoint(&GlobVar->StaticInitializerBlock);
}
IntegerLiteralInst *SILBuilder::createIntegerLiteral(IntegerLiteralExpr *E) {
return insert(IntegerLiteralInst::create(E, getSILDebugLocation(E),
getModule()));
}
FloatLiteralInst *SILBuilder::createFloatLiteral(FloatLiteralExpr *E) {
return insert(FloatLiteralInst::create(E, getSILDebugLocation(E),
getModule()));
}
TupleInst *SILBuilder::createTuple(SILLocation loc, ArrayRef<SILValue> elts) {
// Derive the tuple type from the elements.
SmallVector<TupleTypeElt, 4> eltTypes;
for (auto elt : elts)
eltTypes.push_back(elt->getType().getASTType());
auto tupleType = SILType::getPrimitiveObjectType(
CanType(TupleType::get(eltTypes, getASTContext())));
return createTuple(loc, tupleType, elts);
}
SILType SILBuilder::getPartialApplyResultType(
TypeExpansionContext context, SILType origTy, unsigned argCount,
SILModule &M, SubstitutionMap subs, ParameterConvention calleeConvention,
SILFunctionTypeIsolation resultIsolation,
PartialApplyInst::OnStackKind onStack) {
CanSILFunctionType FTI = origTy.castTo<SILFunctionType>();
if (!subs.empty())
FTI = FTI->substGenericArgs(M, subs, context);
ASSERT(!FTI->isPolymorphic()
&& "must provide substitutions for generic partial_apply");
auto params = FTI->getParameters();
auto newParams = params.slice(0, params.size() - argCount);
auto extInfoBuilder =
FTI->getExtInfo()
.intoBuilder()
.withRepresentation(SILFunctionType::Representation::Thick)
.withIsolation(resultIsolation)
.withIsPseudogeneric(false);
if (onStack)
extInfoBuilder = extInfoBuilder.withNoEscape();
auto extInfo = extInfoBuilder.build();
// If the original method has an @unowned_inner_pointer return, the partial
// application thunk will lifetime-extend 'self' for us, converting the
// return value to @unowned.
//
// If the original method has an @autoreleased return, the partial application
// thunk will retain it for us, converting the return value to @owned.
SmallVector<SILResultInfo, 4> results;
results.append(FTI->getResults().begin(), FTI->getResults().end());
for (auto &result : results) {
if (result.getConvention() == ResultConvention::UnownedInnerPointer)
result = SILResultInfo(result.getReturnValueType(M, FTI, context),
ResultConvention::Unowned);
else if (result.getConvention() == ResultConvention::Autoreleased)
result = SILResultInfo(result.getReturnValueType(M, FTI, context),
ResultConvention::Owned);
}
// Do we still need the substitutions in the result?
bool needsSubstFunctionType = false;
for (auto param : newParams) {
needsSubstFunctionType |= param.getInterfaceType()->hasTypeParameter();
}
for (auto result : results) {
needsSubstFunctionType |= result.getInterfaceType()->hasTypeParameter();
}
for (auto yield : FTI->getYields()) {
needsSubstFunctionType |= yield.getInterfaceType()->hasTypeParameter();
}
if (FTI->hasErrorResult()) {
needsSubstFunctionType
|= FTI->getErrorResult().getInterfaceType()->hasTypeParameter();
}
SubstitutionMap appliedSubs;
if (needsSubstFunctionType) {
appliedSubs = FTI->getCombinedSubstitutions();
}
auto appliedFnType = SILFunctionType::get(nullptr,
extInfo,
FTI->getCoroutineKind(),
calleeConvention,
newParams,
FTI->getYields(),
results,
FTI->getOptionalErrorResult(),
appliedSubs,
SubstitutionMap(),
M.getASTContext());
return SILType::getPrimitiveObjectType(appliedFnType);
}
ProjectBoxInst *SILBuilder::createProjectBox(SILLocation Loc,
SILValue boxOperand,
unsigned index) {
auto boxTy = boxOperand->getType().castTo<SILBoxType>();
auto fieldTy = getSILBoxFieldType(getTypeExpansionContext(), boxTy,
getModule().Types, index);
return insert(new (getModule()) ProjectBoxInst(
getSILDebugLocation(Loc), boxOperand, index, fieldTy));
}
ClassifyBridgeObjectInst *
SILBuilder::createClassifyBridgeObject(SILLocation Loc, SILValue value) {
auto &ctx = getASTContext();
Type int1Ty = BuiltinIntegerType::get(1, ctx);
Type resultTy = TupleType::get({ int1Ty, int1Ty }, ctx);
auto ty = SILType::getPrimitiveObjectType(resultTy->getCanonicalType());
return insert(new (getModule())
ClassifyBridgeObjectInst(getSILDebugLocation(Loc), value, ty));
}
// Create the appropriate cast instruction based on result type.
SingleValueInstruction *
SILBuilder::createUncheckedReinterpretCast(SILLocation Loc, SILValue Op,
SILType Ty) {
ASSERT(isLoadableOrOpaque(Ty));
if (Ty.isTrivial(getFunction()))
return insert(UncheckedTrivialBitCastInst::create(
getSILDebugLocation(Loc), Op, Ty, getFunction()));
if (SILType::canRefCast(Op->getType(), Ty, getModule()))
return createUncheckedRefCast(Loc, Op, Ty);
// If the source and destination types are functions with the same
// kind of representation, then do a function conversion.
if (Op->getType().isObject() && Ty.isObject()) {
if (auto OpFnTy = Op->getType().getAs<SILFunctionType>()) {
if (auto DestFnTy = Ty.getAs<SILFunctionType>()) {
if (OpFnTy->getRepresentation() == DestFnTy->getRepresentation()) {
return createConvertFunction(Loc, Op, Ty, /*withoutActuallyEscaping*/ false);
}
}
}
}
// The destination type is nontrivial, and may be smaller than the source
// type, so RC identity cannot be assumed.
return insert(UncheckedBitwiseCastInst::create(
getSILDebugLocation(Loc), Op, Ty, getFunction()));
}
// Create the appropriate cast instruction based on result type.
SingleValueInstruction *
SILBuilder::createUncheckedForwardingCast(SILLocation Loc, SILValue Op,
SILType Ty) {
// Without ownership, delegate to unchecked reinterpret cast.
if (!hasOwnership())
return createUncheckedReinterpretCast(Loc, Op, Ty);
ASSERT(isLoadableOrOpaque(Ty));
if (Ty.isTrivial(getFunction()))
return insert(UncheckedTrivialBitCastInst::create(
getSILDebugLocation(Loc), Op, Ty, getFunction()));
if (SILType::canRefCast(Op->getType(), Ty, getModule()))
return createUncheckedRefCast(Loc, Op, Ty);
// If the source and destination types are functions with the same
// kind of representation, then do a function conversion.
if (Op->getType().isObject() && Ty.isObject()) {
if (auto OpFnTy = Op->getType().getAs<SILFunctionType>()) {
if (auto DestFnTy = Ty.getAs<SILFunctionType>()) {
if (OpFnTy->getRepresentation() == DestFnTy->getRepresentation()) {
return createConvertFunction(Loc, Op, Ty, /*withoutActuallyEscaping*/ false);
}
}
}
}
// The destination type is nontrivial, and may be smaller than the source
// type, so RC identity cannot be assumed.
return createUncheckedValueCast(Loc, Op, Ty);
}
BranchInst *SILBuilder::createBranch(SILLocation Loc,
SILBasicBlock *TargetBlock,
OperandValueArrayRef Args) {
SmallVector<SILValue, 6> ArgsCopy;
ArgsCopy.reserve(Args.size());
for (auto I = Args.begin(), E = Args.end(); I != E; ++I)
ArgsCopy.push_back(*I);
return createBranch(Loc, TargetBlock, ArgsCopy);
}
/// Branch to the given block if there's an active insertion point,
/// then move the insertion point to the end of that block.
void SILBuilder::emitBlock(SILBasicBlock *BB, SILLocation BranchLoc) {
if (!hasValidInsertionPoint()) {
return emitBlock(BB);
}
// Fall though from the currently active block into the given block.
ASSERT(BB->args_empty() && "cannot fall through to bb with args");
// This is a fall through into BB, emit the fall through branch.
createBranch(BranchLoc, BB);
// Start inserting into that block.
setInsertionPoint(BB);
}
/// splitBlockForFallthrough - Prepare for the insertion of a terminator. If
/// the builder's insertion point is at the end of the current block (as when
/// SILGen is creating the initial code for a function), just create and
/// return a new basic block that will be later used for the continue point.
///
/// If the insertion point is valid (i.e., pointing to an existing
/// instruction) then split the block at that instruction and return the
/// continuation block.
SILBasicBlock *SILBuilder::splitBlockForFallthrough() {
// If we are concatenating, just create and return a new block.
if (insertingAtEndOfBlock()) {
return getFunction().createBasicBlockAfter(BB);
}
// Otherwise we need to split the current block at the insertion point.
auto *NewBB = BB->split(InsertPt);
InsertPt = BB->end();
return NewBB;
}
std::optional<SILDebugVariable>
SILBuilder::substituteAnonymousArgs(llvm::SmallString<4> Name,
std::optional<SILDebugVariable> Var,
SILLocation Loc) {
if (Var && shouldDropVariable(*Var, Loc))
return {};
if (!Var || !Var->ArgNo || !Var->Name.empty())
return Var;
auto *VD = Loc.getAsASTNode<VarDecl>();
if (VD && !VD->getName().empty())
return Var;
llvm::raw_svector_ostream(Name) << '_' << (Var->ArgNo - 1);
Var->Name = Name;
return Var;
}
static bool setAccessToDeinit(BeginAccessInst *beginAccess) {
// It's possible that AllocBoxToStack could catch some cases that
// AccessEnforcementSelection does not promote to [static]. Ultimately, this
// should be an assert, but only after we the two passes can be fixed to share
// a common analysis.
if (beginAccess->getEnforcement() == SILAccessEnforcement::Dynamic)
return false;
beginAccess->setAccessKind(SILAccessKind::Deinit);
return true;
}
PointerUnion<CopyAddrInst *, DestroyAddrInst *>
SILBuilder::emitDestroyAddr(SILLocation Loc, SILValue Operand) {
// Check to see if the instruction immediately before the insertion point is a
// copy_addr from the specified operand. If so, we can fold this into the
// copy_addr as a take.
BeginAccessInst *beginAccess = nullptr;
CopyAddrInst *copyAddrTake = nullptr;
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
while (I != BBStart) {
auto *Inst = &*--I;
if (auto CA = dyn_cast<CopyAddrInst>(Inst)) {
if (!CA->isTakeOfSrc()) {
if (CA->getSrc() == Operand && !CA->isTakeOfSrc()) {
CA->setIsTakeOfSrc(IsTake);
return CA;
}
// If this copy_addr is accessing the same source, continue searching
// backward until we see the begin_access. If any side effects occur
// between the `%adr = begin_access %src` and `copy_addr %adr` then we
// cannot promote the access to a deinit. `[deinit]` requires exclusive
// access, but an instruction with side effects may require shared
// access.
if (CA->getSrc() == beginAccess) {
copyAddrTake = CA;
continue;
}
}
}
// If we've already seen a copy_addr that can be convert to `take`, then
// stop at the begin_access for the copy's source.
if (copyAddrTake && beginAccess == Inst) {
// If `setAccessToDeinit()` returns `true` it has modified the access
// instruction, so we are committed to the transformation on that path.
if (setAccessToDeinit(beginAccess)) {
copyAddrTake->setIsTakeOfSrc(IsTake);
return copyAddrTake;
}
}
// destroy_addrs commonly exist in a block of dealloc_stack's, which don't
// affect take-ability.
if (isa<DeallocStackInst>(Inst))
continue;
// end_borrow insts also don't affect take-ability
if (isa<EndBorrowInst>(Inst))
continue;
// An end_access of the same address may be able to be rewritten as a
// [deinit] access.
if (auto endAccess = dyn_cast<EndAccessInst>(Inst)) {
if (endAccess->getSource() == Operand) {
beginAccess = endAccess->getBeginAccess();
continue;
}
}
// This code doesn't try to prove tricky validity constraints about whether
// it is safe to push the destroy_addr past interesting instructions.
if (Inst->mayHaveSideEffects())
break;
}
// If we didn't find a copy_addr to fold this into, emit the destroy_addr.
return createDestroyAddr(Loc, Operand);
}
static bool couldReduceStrongRefcount(SILInstruction *Inst) {
// Simple memory accesses cannot reduce refcounts.
switch (Inst->getKind()) {
#define NEVER_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Store##Name##Inst: \
return false;
#define ALWAYS_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
/* The next case must be first in this macro because */ \
/* SOMETIMES_LOADABLE_CHECKED_REF_STORAGE will fall into it. */ \
case SILInstructionKind::Name##ReleaseInst: \
if (isLessStrongThan(ReferenceOwnership::Name, ReferenceOwnership::Strong))\
return false; \
break; \
case SILInstructionKind::Name##RetainInst: \
case SILInstructionKind::StrongRetain##Name##Inst: \
return false;
#define SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Store##Name##Inst: \
ALWAYS_LOADABLE_CHECKED_REF_STORAGE(Name, "...")
#define UNCHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::StrongCopy##Name##ValueInst: \
return false;
#include "swift/AST/ReferenceStorage.def"
case SILInstructionKind::LoadInst:
case SILInstructionKind::StoreInst:
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::AllocStackInst:
case SILInstructionKind::DeallocStackInst:
return false;
default:
break;
}
// Assign and copyaddr of trivial types cannot drop refcounts, and 'inits'
// never can either. Nontrivial ones can though, because the overwritten
// value drops a retain. We would have to do more alias analysis to be able
// to safely ignore one of those.
if (auto AI = dyn_cast<AssignInst>(Inst)) {
auto StoredType = AI->getOperand(0)->getType();
if (StoredType.isTrivial(*Inst->getFunction()) ||
StoredType.is<ReferenceStorageType>())
return false;
}
if (auto *CAI = dyn_cast<CopyAddrInst>(Inst)) {
// Initializations can only increase refcounts.
if (CAI->isInitializationOfDest())
return false;
SILType StoredType = CAI->getOperand(0)->getType().getObjectType();
if (StoredType.isTrivial(*Inst->getFunction()) ||
StoredType.is<ReferenceStorageType>())
return false;
}
// This code doesn't try to prove tricky validity constraints about whether
// it is safe to push the release past interesting instructions.
return Inst->mayHaveSideEffects();
}
/// Perform a strong_release instruction at the current location, attempting
/// to fold it locally into nearby retain instructions or emitting an explicit
/// strong release if necessary. If this inserts a new instruction, it
/// returns it, otherwise it returns null.
PointerUnion<StrongRetainInst *, StrongReleaseInst *>
SILBuilder::emitStrongRelease(SILLocation Loc, SILValue Operand) {
// Release on a functionref is a noop.
if (isa<FunctionRefInst>(Operand)) {
return static_cast<StrongReleaseInst *>(nullptr);
}
// Check to see if the instruction immediately before the insertion point is a
// strong_retain of the specified operand. If so, we can zap the pair.
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
while (I != BBStart) {
auto *Inst = &*--I;
if (auto *SRA = dyn_cast<StrongRetainInst>(Inst)) {
if (SRA->getOperand() == Operand)
return SRA;
// Skip past unrelated retains.
continue;
}
// Scan past simple instructions that cannot reduce strong refcounts.
if (couldReduceStrongRefcount(Inst))
break;
}
// If we didn't find a retain to fold this into, emit the release.
return createStrongRelease(Loc, Operand, getDefaultAtomicity());
}
/// Emit a release_value instruction at the current location, attempting to
/// fold it locally into another nearby retain_value instruction. This
/// returns the new instruction if it inserts one, otherwise it returns null.
PointerUnion<RetainValueInst *, ReleaseValueInst *>
SILBuilder::emitReleaseValue(SILLocation Loc, SILValue Operand) {
// Check to see if the instruction immediately before the insertion point is a
// retain_value of the specified operand. If so, we can zap the pair.
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
while (I != BBStart) {
auto *Inst = &*--I;
if (auto *SRA = dyn_cast<RetainValueInst>(Inst)) {
if (SRA->getOperand() == Operand)
return SRA;
// Skip past unrelated retains.
continue;
}
// Scan past simple instructions that cannot reduce refcounts.
if (couldReduceStrongRefcount(Inst))
break;
}
// If we didn't find a retain to fold this into, emit the release.
return createReleaseValue(Loc, Operand, getDefaultAtomicity());
}
PointerUnion<CopyValueInst *, DestroyValueInst *>
SILBuilder::emitDestroyValue(SILLocation Loc, SILValue Operand) {
// Check to see if the instruction immediately before the insertion point is a
// retain_value of the specified operand. If so, we can zap the pair.
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
while (I != BBStart) {
auto *Inst = &*--I;
if (auto *CVI = dyn_cast<CopyValueInst>(Inst)) {
if (SILValue(CVI) == Operand || CVI->getOperand() == Operand)
return CVI;
// Skip past unrelated retains.
continue;
}
// Scan past simple instructions that cannot reduce refcounts.
if (couldReduceStrongRefcount(Inst))
break;
}
// If we didn't find a retain to fold this into, emit the release.
return createDestroyValue(Loc, Operand);
}
SILValue SILBuilder::emitThickToObjCMetatype(SILLocation Loc, SILValue Op,
SILType Ty) {
// If the operand is a 'metatype' instruction accessing a known static type's
// metadata, create a 'metatype' instruction that
// directly produces the Objective-C class object representation instead.
if (auto metatypeInst = dyn_cast<MetatypeInst>(Op)) {
auto origLoc = metatypeInst->getLoc();
return createMetatype(origLoc, Ty);
}
// Just create the thick_to_objc_metatype instruction.
return createThickToObjCMetatype(Loc, Op, Ty);
}
SILValue SILBuilder::emitObjCToThickMetatype(SILLocation Loc, SILValue Op,
SILType Ty) {
// If the operand is a 'metatype' instruction accessing a known static type's
// metadata, create a 'metatype' instruction that directly produces the
// Swift metatype representation instead.
if (auto metatypeInst = dyn_cast<MetatypeInst>(Op)) {
auto origLoc = metatypeInst->getLoc();
return createMetatype(origLoc, Ty);
}
// Just create the objc_to_thick_metatype instruction.
return createObjCToThickMetatype(Loc, Op, Ty);
}
ValueMetatypeInst *SILBuilder::createValueMetatype(SILLocation Loc,
SILType MetatypeTy,
SILValue Base) {
ASSERT(Base->getType().isLoweringOf(
getTypeExpansionContext(), getModule(),
MetatypeTy.castTo<MetatypeType>().getInstanceType()) &&
"value_metatype result must be formal metatype of the lowered operand "
"type");
return insert(new (getModule()) ValueMetatypeInst(getSILDebugLocation(Loc),
MetatypeTy, Base));
}
// TODO: This should really be an operation on type lowering.
void SILBuilder::emitDestructureValueOperation(
SILLocation loc, SILValue v, SmallVectorImpl<SILValue> &results) {
// Once destructure is allowed everywhere, remove the projection code.
// If we do not have a tuple or a struct, add to our results list and return.
SILType type = v->getType();
if (!(type.is<TupleType>() || type.getStructOrBoundGenericStruct())) {
results.emplace_back(v);
return;
}
// Otherwise, we want to destructure add the destructure and return.
if (getFunction().hasOwnership()) {
auto *i = emitDestructureValueOperation(loc, v);
llvm::copy(i->getResults(), std::back_inserter(results));
return;
}
// In non qualified ownership SIL, drop back to using projection code.
SmallVector<Projection, 16> projections;
Projection::getFirstLevelProjections(v->getType(), getModule(),
getTypeExpansionContext(), projections);
llvm::transform(projections, std::back_inserter(results),
[&](const Projection &p) -> SILValue {
return p.createObjectProjection(*this, loc, v).get();
});
}
// TODO: Can we put this on type lowering? It would take a little bit of work
// since we would need to be able to handle aggregate trivial types which is not
// represented today in TypeLowering.
void SILBuilder::emitDestructureAddressOperation(
SILLocation loc, SILValue v, SmallVectorImpl<SILValue> &results) {
// If we do not have a tuple or a struct, add to our results list.
SILType type = v->getType();
if (!(type.is<TupleType>() || type.getStructOrBoundGenericStruct())) {
results.emplace_back(v);
return;
}
SmallVector<Projection, 16> projections;
Projection::getFirstLevelProjections(v->getType(), getModule(),
getTypeExpansionContext(), projections);
llvm::transform(projections, std::back_inserter(results),
[&](const Projection &p) -> SILValue {
return p.createAddressProjection(*this, loc, v).get();
});
}
void SILBuilder::emitDestructureAddressOperation(
SILLocation loc, SILValue v,
function_ref<void(unsigned, SILValue)> results) {
// If we do not have a tuple or a struct, add to our results list.
SILType type = v->getType();
if (!(type.is<TupleType>() || type.getStructOrBoundGenericStruct())) {
return;
}
SmallVector<Projection, 16> projections;
Projection::getFirstLevelProjections(v->getType(), getModule(),
getTypeExpansionContext(), projections);
for (auto pair : llvm::enumerate(projections)) {
results(pair.index(),
pair.value().createAddressProjection(*this, loc, v).get());
}
}
void SILBuilder::emitDestructureValueOperation(
SILLocation loc, SILValue operand,
function_ref<void(unsigned, SILValue)> func) {
// Do a quick check to see if we have a tuple without elements. In that
// case, bail early since we are not going to ever invoke Func.
if (auto tupleType = operand->getType().getAs<TupleType>())
if (0 == tupleType->getNumElements())
return;
SmallVector<SILValue, 8> results;
emitDestructureValueOperation(loc, operand, results);
for (auto p : llvm::enumerate(results)) {
func(p.index(), p.value());
}
}
DebugValueInst *SILBuilder::createDebugValue(SILLocation Loc, SILValue src,
SILDebugVariable Var,
PoisonRefs_t poisonRefs,
UsesMoveableValueDebugInfo_t moved,
bool trace, bool overrideLoc) {
if (shouldDropVariable(Var, Loc))
return nullptr;
llvm::SmallString<4> Name;
SILDebugLocation DebugLoc;
if (overrideLoc) {
// Debug location overrides cannot apply to debug value instructions.
DebugLocOverrideRAII LocOverride{*this, std::nullopt};
DebugLoc = getSILDebugLocation(Loc, true);
} else {
DebugLoc = getSILDebugLocation(Loc, true);
}
return insert(DebugValueInst::create(DebugLoc, src, getModule(),
*substituteAnonymousArgs(Name, Var, Loc),
poisonRefs, moved, trace));
}
DebugValueInst *SILBuilder::createDebugValueAddr(
SILLocation Loc, SILValue src, SILDebugVariable Var,
UsesMoveableValueDebugInfo_t moved, bool trace) {
if (shouldDropVariable(Var, Loc))
return nullptr;
llvm::SmallString<4> Name;
// Debug location overrides cannot apply to debug addr instructions.
DebugLocOverrideRAII LocOverride{*this, std::nullopt};
return insert(DebugValueInst::createAddr(
getSILDebugLocation(Loc, true), src, getModule(),
*substituteAnonymousArgs(Name, Var, Loc), moved, trace));
}
void SILBuilder::emitScopedBorrowOperation(SILLocation loc, SILValue original,
function_ref<void(SILValue)> &&fun) {
SILValue value = original;
if (value->getType().isAddress()) {
value = createLoadBorrow(loc, value);
} else {
value = emitBeginBorrowOperation(loc, value);
}
fun(value);
// If we actually inserted a borrowing operation... insert the end_borrow.
if (value != original)
createEndBorrow(loc, value);
}
EndBorrowInst *SILBuilder::createEndBorrow(SILLocation loc, SILValue borrowedValue) {
ASSERT(!SILArgument::isTerminatorResult(borrowedValue) &&
"terminator results do not have end_borrow");
ASSERT(!isa<SILFunctionArgument>(borrowedValue) &&
"Function arguments should never have an end_borrow");
updateReborrowFlags(borrowedValue);
return insert(new (getModule())
EndBorrowInst(getSILDebugLocation(loc), borrowedValue));
}
SILPhiArgument *SILBuilder::createSwitchOptional(
SILLocation loc, SILValue operand,
SILBasicBlock *someBB, SILBasicBlock *noneBB,
ValueOwnershipKind forwardingOwnershipKind,
ProfileCounter someCount,
ProfileCounter noneCount) {
ProfileCounter counts[] = {someCount, noneCount};
std::optional<ArrayRef<ProfileCounter>> countsArg = std::nullopt;
if (someCount || noneCount) countsArg = counts;
auto &ctx = getASTContext();
auto sei = createSwitchEnum(loc, operand, /*default*/ nullptr,
{{ctx.getOptionalSomeDecl(), someBB},
{ctx.getOptionalNoneDecl(), noneBB}},
countsArg, /*default*/ProfileCounter(),
forwardingOwnershipKind);
return sei->createResult(someBB, operand->getType().unwrapOptionalType());
}
/// Attempt to propagate ownership from \p operand to the returned forwarding
/// ownership where the forwarded value has type \p targetType. If this fails,
/// return Owned forwarding ownership instead.
///
/// Propagation only fails when \p operand is dynamically trivial, as indicated
/// by ownership None, AND \p targetType is statically nontrivial.
///
/// Example:
///
/// %e = enum $Optional<AnyObject>, #Optional.none!enumelt
/// switch_enum %e : $Optional<AnyObject>,
/// case #Optional.some!enumelt: bb2...,
/// forwarding: @owned
/// bb2(%arg : @owned AnyObject):
///
/// Example:
///
/// %mt = metatype $@thick C.Type
/// checked_cast_br C.Type in %mt : $@thick C.Type to AnyObject.Type, bb1, bb2,
/// forwarding: @owned
/// bb1(%arg : @owned AnyObject.Type):
///
/// If the forwarded value is statically known nontrivial, then the forwarding
/// ownership cannot be None. Such a result is unreachable, but the SIL on that
/// path must still be valid. When creating ownership out of thin air, default
/// to Owned because that allows the value to be consumed without generating a
/// copy. This does require the client code to handle ending the lifetime of an
/// owned result even if the input was passed as guaranteed.
///
/// Note: For simplicity, ownership None is not propagated for any statically
/// nontrivial result, even if \p targetType may also be dynamically
/// trivial. For example, the operand of a switch_enum could be a nested enum
/// such that all switch cases may be dynamically trivial. Or a checked_cast_br
/// could cast from one dynamically trivial enum to another. Figuring out
/// whether the dynamically trivial operand value maps onto a dynamically
/// trivial terminator result would be very complex with no practical benefit.
static ValueOwnershipKind deriveForwardingOwnership(SILValue operand,
SILType targetType,
SILFunction &func) {
if (operand->getOwnershipKind() != OwnershipKind::None ||
targetType.isTrivial(func)) {
return operand->getOwnershipKind();
}
return OwnershipKind::Owned;
}
SwitchEnumInst *SILBuilder::createSwitchEnum(
SILLocation Loc, SILValue Operand, SILBasicBlock *DefaultBB,
ArrayRef<std::pair<EnumElementDecl *, SILBasicBlock *>> CaseBBs,
std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount) {
// Consider the operand's type to be the target's type since a switch
// covers all cases including the default argument.
auto forwardingOwnership =
deriveForwardingOwnership(Operand, Operand->getType(), getFunction());
return createSwitchEnum(Loc, Operand, DefaultBB, CaseBBs, CaseCounts,
DefaultCount, forwardingOwnership);
}
CheckedCastBranchInst *SILBuilder::createCheckedCastBranch(
SILLocation Loc, bool isExact,
CastingIsolatedConformances isolatedConformances,
SILValue op, CanType srcFormalTy,
SILType destLoweredTy, CanType destFormalTy, SILBasicBlock *successBB,
SILBasicBlock *failureBB, ProfileCounter target1Count,
ProfileCounter target2Count) {
auto forwardingOwnership =
deriveForwardingOwnership(op, destLoweredTy, getFunction());
return createCheckedCastBranch(
Loc, isExact, isolatedConformances, op, srcFormalTy, destLoweredTy,
destFormalTy, successBB,
failureBB, forwardingOwnership, target1Count, target2Count);
}
CheckedCastBranchInst *SILBuilder::createCheckedCastBranch(
SILLocation Loc, bool isExact,
CastingIsolatedConformances isolatedConformances,
SILValue op, CanType srcFormalTy,
SILType destLoweredTy, CanType destFormalTy, SILBasicBlock *successBB,
SILBasicBlock *failureBB, ValueOwnershipKind forwardingOwnershipKind,
ProfileCounter target1Count, ProfileCounter target2Count) {
ASSERT((!hasOwnership() || !failureBB->getNumArguments() ||
failureBB->getArgument(0)->getType() == op->getType()) &&
"failureBB's argument doesn't match incoming argument type");
return insertTerminator(CheckedCastBranchInst::create(
getSILDebugLocation(Loc), isExact, isolatedConformances, op, srcFormalTy,
destLoweredTy, destFormalTy, successBB, failureBB, getFunction(),
target1Count, target2Count, forwardingOwnershipKind));
}
BuiltinInst *SILBuilder::createZeroInitAddr(SILLocation loc, SILValue addr) {
assert(addr->getType().isAddress());
auto &C = getASTContext();
auto zeroInit = getBuiltinValueDecl(C, C.getIdentifier("zeroInitializer"));
return createBuiltin(loc, zeroInit->getBaseIdentifier(),
SILType::getEmptyTupleType(C),
SubstitutionMap(),
addr);
}
SILValue SILBuilder::createZeroInitValue(SILLocation loc, SILType loweredTy) {
assert(loweredTy.isObject());
auto &C = getASTContext();
auto zeroInit = getBuiltinValueDecl(C, C.getIdentifier("zeroInitializer"));
return createBuiltin(loc, zeroInit->getBaseIdentifier(),
loweredTy,
SubstitutionMap(),
{});
}
void SILBuilderWithScope::insertAfter(SILInstruction *inst,
function_ref<void(SILBuilder &)> func) {
if (isa<TermInst>(inst)) {
for (const SILSuccessor &succ : inst->getParent()->getSuccessors()) {
SILBasicBlock *succBlock = succ;
ASSERT(succBlock->getSinglePredecessorBlock() == inst->getParent() &&
"the terminator instruction must not have critical successors");
SILBuilderWithScope builder(succBlock->begin());
func(builder);
}
} else {
SILBuilderWithScope builder(std::next(inst->getIterator()));
func(builder);
}
}