Files
swift-mirror/lib/SIL/IR/SILValue.cpp
Andrew Trick e705a6d7c3 Temporarily introduce AnyInteriorPointer operand ownership.
This is necessary to fix a recent OSSA bug that breaks common occurrences on
mark_dependence [nonescaping]. Rather than reverting that change above, we make
forward progress toward implicit borrows scopes, as was the original intention.

In the near future, all InteriorPointer instructions will create an implicit
borrow scope. This means we have the option of not emitting extraneous
begin/end_borrow instructions around intructions like ref_element_addr,
open_existential, and project_box. After that, we can also migrate
GuaranteedForwarding instructions like tuple_extract and struct_extract.
2025-02-05 16:23:02 -08:00

599 lines
20 KiB
C++

//===--- SILValue.cpp - Implementation for SILValue -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/Assertions.h"
#include "swift/SIL/SILValue.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuiltinVisitor.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/Test.h"
#include "llvm/ADT/StringSwitch.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Check SILNode Type Properties
//===----------------------------------------------------------------------===//
/// These are just for performance and verification. If one needs to make
/// changes that cause the asserts the fire, please update them. The purpose is
/// to prevent these predicates from changing values by mistake.
//===----------------------------------------------------------------------===//
// Check SILValue Type Properties
//===----------------------------------------------------------------------===//
/// These are just for performance and verification. If one needs to make
/// changes that cause the asserts the fire, please update them. The purpose is
/// to prevent these predicates from changing values by mistake.
static_assert(std::is_standard_layout<SILValue>::value,
"Expected SILValue to be standard layout");
static_assert(sizeof(SILValue) == sizeof(uintptr_t),
"SILValue should be pointer sized");
//===----------------------------------------------------------------------===//
// Utility Methods
//===----------------------------------------------------------------------===//
void ValueBase::replaceAllUsesWith(ValueBase *RHS) {
assert(this != RHS && "Cannot RAUW a value with itself");
while (!use_empty()) {
Operand *Op = *use_begin();
Op->set(RHS);
}
}
void ValueBase::replaceAllUsesWithUndef() {
auto *F = getFunction();
if (!F) {
llvm_unreachable("replaceAllUsesWithUndef can only be used on ValueBase "
"that have access to the parent function.");
}
while (!use_empty()) {
Operand *Op = *use_begin();
Op->set(SILUndef::get(F, Op->get()->getType()));
}
}
void ValueBase::replaceAllTypeDependentUsesWith(ValueBase *RHS) {
SmallVector<Operand *, 4> typeUses(getTypeDependentUses());
for (Operand *use : typeUses) {
use->set(RHS);
}
}
SILInstruction *ValueBase::getDefiningInstruction() {
if (auto *inst = dyn_cast<SingleValueInstruction>(this))
return inst;
if (auto *result = dyn_cast<MultipleValueInstructionResult>(this))
return result->getParent();
return nullptr;
}
SILInstruction *ValueBase::getDefiningInstructionOrTerminator() {
if (auto *inst = dyn_cast<SingleValueInstruction>(this))
return inst;
if (auto *result = dyn_cast<MultipleValueInstructionResult>(this))
return result->getParent();
if (auto *result = SILArgument::isTerminatorResult(this))
return result->getSingleTerminator();
return nullptr;
}
SILInstruction *ValueBase::getDefiningInsertionPoint() {
if (auto *inst = getDefiningInstruction())
return inst;
if (auto *arg = dyn_cast<SILArgument>(this))
return &*arg->getParentBlock()->begin();
return nullptr;
}
SILInstruction *ValueBase::getNextInstruction() {
if (auto *inst = getDefiningInstruction())
return &*std::next(inst->getIterator());
if (auto *arg = dyn_cast<SILArgument>(this))
return &*arg->getParentBlock()->begin();
return nullptr;
}
std::optional<ValueBase::DefiningInstructionResult>
ValueBase::getDefiningInstructionResult() {
if (auto *inst = dyn_cast<SingleValueInstruction>(this))
return DefiningInstructionResult{inst, 0};
if (auto *result = dyn_cast<MultipleValueInstructionResult>(this))
return DefiningInstructionResult{result->getParent(), result->getIndex()};
return std::nullopt;
}
bool SILPhiArgument::isLexical() const {
if (!isPhi())
return false;
// FIXME: Cache this on the node.
// Does there exist an incoming value which is lexical?
//
// Invert the condition to "is every incoming value non-lexical?" in order to
// stop visiting incoming values once one lexical value is
// found--visitTransitiveIncomingPhiOperands stops once false is returned
// from it.
auto isEveryIncomingValueNonLexical =
visitTransitiveIncomingPhiOperands([&](auto *, auto *operand) {
auto value = operand->get();
SILPhiArgument *phi = dyn_cast<SILPhiArgument>(value);
if (phi && phi->isPhi()) {
return true;
}
// If this non-phi incoming value is lexical, then there is one at least
// one lexical value incoming to this phi, to it's lexical.
return !value->isLexical();
});
return !isEveryIncomingValueNonLexical;
}
bool ValueBase::isLexical() const {
if (auto *argument = dyn_cast<SILFunctionArgument>(this))
return argument->getLifetime().isLexical();
auto *phi = dyn_cast<SILPhiArgument>(this);
if (phi && phi->isPhi())
return phi->isLexical();
if (auto *bbi = dyn_cast<BeginBorrowInst>(this))
return bbi->isLexical();
if (auto *mvi = dyn_cast<MoveValueInst>(this))
return mvi->isLexical();
// TODO: This is only a workaround. Optimizations should look through such instructions to
// get the isLexical state, instead of doing it here.
// rdar://143577158
if (auto *eilr = dyn_cast<EndInitLetRefInst>(this))
return eilr->getOperand()->isLexical();
return false;
}
namespace swift::test {
// Arguments:
// - value
// Dumps:
// - value
// - whether it's lexical
static FunctionTest IsLexicalTest("is_lexical", [](auto &function,
auto &arguments,
auto &test) {
auto value = arguments.takeValue();
auto isLexical = value->isLexical();
value->print(llvm::outs());
auto *boolString = isLexical ? "true" : "false";
llvm::outs() << boolString << "\n";
});
} // end namespace swift::test
bool ValueBase::isGuaranteedForwarding() const {
if (getOwnershipKind() != OwnershipKind::Guaranteed) {
return false;
}
// NOTE: canOpcodeForwardInnerGuaranteedValues returns true for transformation
// terminator results.
if (canOpcodeForwardInnerGuaranteedValues(this) ||
isa<SILFunctionArgument>(this)) {
return true;
}
// If not a phi, return false
auto *phi = dyn_cast<SILPhiArgument>(this);
if (!phi || !phi->isPhi()) {
return false;
}
return phi->isGuaranteedForwarding();
}
bool ValueBase::isBeginApplyToken() const {
auto *result = isaResultOf<BeginApplyInst>(this);
if (!result)
return false;
return result->isBeginApplyToken();
}
bool ValueBase::hasDebugTrace() const {
for (auto *op : getUses()) {
if (auto *debugValue = dyn_cast<DebugValueInst>(op->getUser())) {
if (debugValue->hasTrace())
return true;
}
}
return false;
}
bool ValueBase::isFromVarDecl() {
if (auto *mvi = dyn_cast<MoveValueInst>(this)) {
return mvi->isFromVarDecl();
}
if (auto *bbi = dyn_cast<BeginBorrowInst>(this)) {
return bbi->isFromVarDecl();
}
return false;
}
SILBasicBlock *SILNode::getParentBlock() const {
if (auto *Inst = dyn_cast<SILInstruction>(this))
return Inst->getParent();
if (auto *Arg = dyn_cast<SILArgument>(this))
return Arg->getParent();
if (auto *MVR = dyn_cast<MultipleValueInstructionResult>(this)) {
return MVR->getParent()->getParent();
}
if (auto *undef = dyn_cast<SILUndef>(this)) {
// By convention, undefs are considered to be defined at the entry of the function.
return undef->getParent()->getEntryBlock();
}
return nullptr;
}
SILFunction *SILNode::getFunction() const {
if (auto *parentBlock = getParentBlock()) {
// This can return nullptr if the block's parent is a global variable
// initializer.
if (auto *parentFunction = parentBlock->getParent()) {
return parentFunction;
}
}
if (auto *undef = dyn_cast<SILUndef>(this))
return undef->getParent();
if (auto *placeHolder = dyn_cast<PlaceholderValue>(this))
return placeHolder->getParent();
return nullptr;
}
SILModule *SILNode::getModule() const { return &getFunction()->getModule(); }
/// Get a location for this value.
SILLocation SILValue::getLoc() const {
if (auto *instr = Value->getDefiningInstruction())
return instr->getLoc();
if (auto *arg = dyn_cast<SILArgument>(*this)) {
if (arg->getDecl())
return RegularLocation(const_cast<ValueDecl *>(arg->getDecl()));
}
// TODO: bbargs should probably use one of their operand locations.
return Value->getFunction()->getLocation();
}
void SILValue::dump() const {
Value->dump();
}
//===----------------------------------------------------------------------===//
// OwnershipKind
//===----------------------------------------------------------------------===//
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
const OwnershipKind &kind) {
return os << kind.asString();
}
StringRef OwnershipKind::asString() const {
switch (value) {
case OwnershipKind::Any:
return "any";
case OwnershipKind::Unowned:
return "unowned";
case OwnershipKind::Owned:
return "owned";
case OwnershipKind::Guaranteed:
return "guaranteed";
case OwnershipKind::None:
return "none";
}
llvm_unreachable("covered switch");
}
//===----------------------------------------------------------------------===//
// ValueOwnershipKind
//===----------------------------------------------------------------------===//
ValueOwnershipKind::ValueOwnershipKind(const SILFunction &F, SILType Type,
SILArgumentConvention Convention)
: ValueOwnershipKind(F, Type, Convention,
SILModuleConventions(F.getModule())) {}
ValueOwnershipKind::ValueOwnershipKind(const SILFunction &F, SILType Type,
SILArgumentConvention Convention,
SILModuleConventions moduleConventions)
: value(OwnershipKind::Any) {
// Trivial types can be passed using a variety of conventions. They always
// have trivial ownership.
if (Type.isTrivial(F)) {
value = OwnershipKind::None;
return;
}
switch (Convention) {
case SILArgumentConvention::Indirect_In_CXX:
case SILArgumentConvention::Indirect_In_Guaranteed:
value = moduleConventions.isTypeIndirectForIndirectParamConvention(
Type.getASTType())
? OwnershipKind::None
: OwnershipKind::Guaranteed;
break;
case SILArgumentConvention::Indirect_In:
value = moduleConventions.isTypeIndirectForIndirectParamConvention(
Type.getASTType())
? OwnershipKind::None
: OwnershipKind::Owned;
break;
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_InoutAliasable:
case SILArgumentConvention::Indirect_Out:
case SILArgumentConvention::Pack_Inout:
case SILArgumentConvention::Pack_Out:
case SILArgumentConvention::Pack_Owned:
case SILArgumentConvention::Pack_Guaranteed:
value = OwnershipKind::None;
return;
case SILArgumentConvention::Direct_Owned:
value = OwnershipKind::Owned;
return;
case SILArgumentConvention::Direct_Unowned:
value = OwnershipKind::Unowned;
return;
case SILArgumentConvention::Direct_Guaranteed:
value = OwnershipKind::Guaranteed;
return;
}
}
StringRef ValueOwnershipKind::asString() const {
return value.asString();
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
ValueOwnershipKind kind) {
return os << kind.asString();
}
ValueOwnershipKind::ValueOwnershipKind(StringRef S)
: value(OwnershipKind::Any) {
auto Result = llvm::StringSwitch<std::optional<OwnershipKind::innerty>>(S)
.Case("unowned", OwnershipKind::Unowned)
.Case("owned", OwnershipKind::Owned)
.Case("guaranteed", OwnershipKind::Guaranteed)
.Case("none", OwnershipKind::None)
.Default(std::nullopt);
if (!Result.has_value())
llvm_unreachable("Invalid string representation of ValueOwnershipKind");
value = Result.value();
}
ValueOwnershipKind
ValueOwnershipKind::getProjectedOwnershipKind(const SILFunction &F,
SILType Proj) const {
if (Proj.isTrivial(F))
return OwnershipKind::None;
return *this;
}
#if 0
/// Map a SILValue mnemonic name to its ValueKind.
ValueKind swift::getSILValueKind(StringRef Name) {
#define SINGLE_VALUE_INST(Id, TextualName, Parent, MemoryBehavior, \
ReleasingBehavior) \
if (Name == #TextualName) \
return ValueKind::Id;
#define VALUE(Id, Parent) \
if (Name == #Id) \
return ValueKind::Id;
#include "swift/SIL/SILNodes.def"
#ifdef NDEBUG
llvm::errs()
<< "Unknown SILValue name\n";
abort();
#endif
llvm_unreachable("Unknown SILValue name");
}
/// Map ValueKind to a corresponding mnemonic name.
StringRef swift::getSILValueName(ValueKind Kind) {
switch (Kind) {
#define SINGLE_VALUE_INST(Id, TextualName, Parent, MemoryBehavior, \
ReleasingBehavior) \
case ValueKind::Id: \
return #TextualName;
#define VALUE(Id, Parent) \
case ValueKind::Id: \
return #Id;
#include "swift/SIL/SILNodes.def"
}
}
#endif
//===----------------------------------------------------------------------===//
// UseLifetimeConstraint
//===----------------------------------------------------------------------===//
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
UseLifetimeConstraint constraint) {
switch (constraint) {
case UseLifetimeConstraint::NonLifetimeEnding:
os << "NonLifetimeEnding";
break;
case UseLifetimeConstraint::LifetimeEnding:
os << "LifetimeEnding";
break;
}
return os;
}
//===----------------------------------------------------------------------===//
// Operand
//===----------------------------------------------------------------------===//
void Operand::updateReborrowFlags() {
if (isa<EndBorrowInst>(getUser())) {
swift::updateReborrowFlags(get());
}
}
void Operand::verify() const {
if (isa<BorrowedFromInst>(getUser()) && getOperandNumber() == 0) {
assert(isa<SILArgument>(get()) || isa<SILUndef>(get()));
}
}
SILBasicBlock *Operand::getParentBlock() const {
auto *self = const_cast<Operand *>(this);
return self->getUser()->getParent();
}
SILFunction *Operand::getParentFunction() const {
auto *self = const_cast<Operand *>(this);
return self->getUser()->getFunction();
}
bool Operand::canAcceptKind(ValueOwnershipKind kind,
SILModuleConventions *silConv) const {
auto operandOwnership = getOperandOwnership(silConv);
auto constraint = operandOwnership.getOwnershipConstraint();
if (constraint.satisfiesConstraint(kind)) {
// Constraints aren't precise enough to enforce Unowned value uses.
if (kind == OwnershipKind::Unowned) {
return canAcceptUnownedValue(operandOwnership);
}
return true;
}
return false;
}
bool Operand::satisfiesConstraints(SILModuleConventions *silConv) const {
return canAcceptKind(get()->getOwnershipKind(), silConv);
}
bool Operand::isLifetimeEnding() const {
auto constraint = getOwnershipConstraint();
// If our use lifetime constraint is NonLifetimeEnding, just return false.
if (!constraint.isLifetimeEnding())
return false;
// Otherwise, we may have a lifetime ending use. We consider two cases here:
// the case where our value has OwnershipKind::None and one where it has some
// other OwnershipKind. Note that values with OwnershipKind::None ownership
// can not have their lifetime ended since they are outside of the ownership
// system. Given such a case, if we have such a value we return
// isLifetimeEnding() as false even if the constraint itself has a constraint
// that says a value is LifetimeEnding. If we have a value that has a
// non-OwnershipKind::None ownership then we just return true as expected.
return get()->getOwnershipKind() != OwnershipKind::None;
}
bool Operand::isConsuming() const {
if (!getOwnershipConstraint().isConsuming())
return false;
return get()->getOwnershipKind() != OwnershipKind::None;
}
void Operand::dump() const { print(llvm::dbgs()); }
void Operand::print(llvm::raw_ostream &os) const {
os << "Operand.\n"
"Owner: "
<< *Owner << "Value: " << get() << "Operand Number: " << getOperandNumber()
<< '\n'
<< "Is Type Dependent: " << (isTypeDependent() ? "yes" : "no") << '\n';
}
SILFunction *Operand::getFunction() const {
return getUser()->getFunction();
}
//===----------------------------------------------------------------------===//
// OperandConstraint
//===----------------------------------------------------------------------===//
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
OwnershipConstraint constraint) {
return os << "<Constraint "
"Kind:" << constraint.getPreferredKind()
<< " LifetimeConstraint:" << constraint.getLifetimeConstraint()
<< ">";
}
StringRef OperandOwnership::asString() const {
switch (value) {
case OperandOwnership::NonUse:
return "non-use";
case OperandOwnership::TrivialUse:
return "trivial-use";
case OperandOwnership::InstantaneousUse:
return "instantaneous";
case OperandOwnership::UnownedInstantaneousUse:
return "unowned-instantaneous";
case OperandOwnership::ForwardingUnowned:
return "forwarding-unowned";
case OperandOwnership::PointerEscape:
return "pointer-escape";
case OperandOwnership::BitwiseEscape:
return "bitwise-escape";
case OperandOwnership::Borrow:
return "borrow";
case OperandOwnership::DestroyingConsume:
return "destroying-consume";
case OperandOwnership::ForwardingConsume:
return "forwarding-consume";
case OperandOwnership::InteriorPointer:
return "interior-pointer";
case OperandOwnership::AnyInteriorPointer:
return "any-interior-pointer";
case OperandOwnership::GuaranteedForwarding:
return "guaranteed-forwarding";
case OperandOwnership::EndBorrow:
return "end-borrow";
case OperandOwnership::Reborrow:
return "reborrow";
}
llvm_unreachable("covered switch");
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
const OperandOwnership &operandOwnership) {
return os << operandOwnership.asString();
}
//===----------------------------------------------------------------------===//
// PlaceholderValue
//===----------------------------------------------------------------------===//
int PlaceholderValue::numPlaceholderValuesAlive = 0;
PlaceholderValue::PlaceholderValue(SILFunction *fn, SILType type)
: ValueBase(ValueKind::PlaceholderValue, type), parentFunction(fn) {
numPlaceholderValuesAlive++;
}
PlaceholderValue::~PlaceholderValue() {
numPlaceholderValuesAlive--;
}